Biophysical Journal —
physical / Biophysical Society

Errors in Energy Landscapes Measured with Particle
Tracking
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ABSTRACT Tracking Brownian particles is often employed to map the energy landscape they explore. Such measurements
have been exploited to study many biological processes and interactions in soft materials. Yet video tracking is irremediably
contaminated by localization errors originating from two imaging artifacts: the “static” errors come from signal noise, and the
“dynamic” errors arise from the motion blur due to finite frame-acquisition time. We show that these errors result in systematic
and nontrivial biases in the measured energy landscapes. We derive a relationship between the true and the measured potential
that elucidates, among other aberrations, the presence of false double-well minima in the apparent potentials reported in recent
studies. We further assess several canonical trapping and pair-interaction potentials by using our analytically derived results and
Brownian dynamics simulations. In particular, we show that the apparent spring stiffness of harmonic potentials (such as optical
traps) is increased by dynamic errors but decreased by static errors. Our formula allows for the development of efficient correc-
tions schemes, and we also present in this work a provisional method for reconstructing true potentials from the measured ones.

INTRODUCTION

Video tracking of Brownian particles is an important tech-
nique that serves multiple purposes. It has been used for de-
cades to study biological and soft matter and has indeed
provided valuable information on the microscale dynamics
and structures of these systems (1-3). With this technique,
one can, for instance, probe live-cell microenvironments
(4,5), study the dynamics of individual proteins in natural
settings (6,7), or image the viral invasion of host cells (8,9).
Extracting mechanical properties of individual biological
molecules has also been shown to be possible by measuring
the thermal fluctuations of cytoskeletal and membrane fila-
ments (10-13) and of DNA (14,15). Using single-molecule
tracking, recent studies have further measured the trapping
energetic landscapes confining the movements of membrane
receptors (16,17). Brownian-particles tracking has also been
used extensively in synthetic-soft-matter physics. Hence,
central applications of this technique have been to determine
the microrheology, diffusion rates, or mechanical properties
of complex fluids (18-21). It has also been employed to mea-
sure colloidal interactions of electrostatic (22,23) or entropic
(24,25) origins and more recently to map the trapping en-
ergies of microchannels (26-29).
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Statistical analysis of Brownian-particle trajectories is a
prerequisite to extracting observables that can be physically
interpreted (30). The mean-squared displacement (MSD) is
often calculated as a measure of the time- or population-
averaged dynamics of the tracked particles. For example,
the MSD enables distinguishing between diffusive, driven,
subdiffusive, hopping, or trapped motions (31).

Reconstructing the underlying energy landscape guiding
the particles’ dynamics is another insightful analysis of
Brownian trajectories, which has been exploited in many
of the aforementioned applications (16,17,22-29). To calcu-
late this landscape, the statistics of the Brownian particles’
positions is measured at equilibrium and assumed to obey
the Boltzmann distribution (23,27,32,33). Note that this
analysis requires only localizing particles in each frame
of the video, whereas calculating the MSD involves the
additional and often nontrivial step of linking the particles’
successive positions into trajectories (30).

Video particle tracking, however, suffers from various
sources of errors. In particular, artifacts intrinsic to the im-
aging detectors can contaminate the trajectory measure-
ments well beyond the statistical uncertainties arising
from finite sampling. Several studies have compared the re-
silience of tracking methods to these errors (2,34), and new
Bayesian techniques notably tend to improve the robustness
of the extracted trajectories (2,35). Nevertheless, posi-
tioning and trajectory linking are irremediably suffering
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from errors, which have been recognized to propagate to the
measured physical observables (18,27,33,36-47).

Most detection errors may be classified into two cate-
gories: “static” and “dynamic” (48). The “static error”
typically comes from video-signal noise (camera-specific
noise, background autofluorescence, etc.) and would even
affect the localization of an immobile particle (30,48).
The “dynamic error” is the result of motion blur due to
finite camera exposure time and occurs when measuring
the positions of a moving particle. The propagation of these
errors to MSD calculations has been characterized in detail
(37,38,43). However, no such systematic description exists
for their effects on mapping energetic landscapes. Yet the
need for such studies has been emphasized by the recent
experimental work of Krishnan et al. (27), which notably
shows that trapping potentials, extracted from video particle
tracking via the Boltzmann distribution, are strongly influ-
enced by the camera exposure time (26). On the other
hand, inference schemes may be a promising approach to
extract reliable measures of trapping potentials from noisy
data (49,50), and the consequences of generic localization
errors on hopping energies have indeed been analyzed
(51). Nevertheless, to the best of our knowledge, a rigorous
account of the distinct effects of static and dynamic errors
have not yet been fully incorporated into these Bayesian
approaches.

The goal of this work is to explain how static and dy-
namic errors affect energetic mapping. We derive analyti-
cally a relationship between the true potential landscape
and its apparent evaluation when measurements are
contaminated by these errors. Our results notably show
that static and dynamic errors cause systematic biases and
misinterpretations in experimental results. We also explore
means for postmeasurement corrections of these errors,
which would allow experimentalists to revise their existing
data. The implications of our work are relevant for a wide
class of trapping and interparticle potentials. The article is
organized as follows. Methods describes the model quanti-
fying how localization errors affect the measured potentials
and details the algorithm to verify these predictions (in Sim-
ulations). Results and Discussion presents the simulation
data to confirm the validity of our formula for specific
and pertinent potentials and further explains in Correction
a possible strategy to correct experimental results for static
and dynamic errors.

METHODS
Static and dynamic errors

The relationship between the potential V probed by the trapped particles and
the probability density function (PDF) of their positions r = (xj, X2, X3) is
given at equilibrium by the Boltzmann distribution f;(r) eV where
8 = (kgT)~' (kg: Boltzmann constant; T: temperature). In our notation,
fe(r) is the joint PDF of r evaluated at r = (x;,x2,X3), the space coordinates.
In principle, the Boltzmann distribution allows experimentalists to recover
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the energetic landscape by measuring the equilibrium distributions of posi-
tions of the trapped Brownian particles using video microscopy. In practice,
however, cameras measure a moving average of positions over a shutter time
7, to which a zero-mean random vector & resulting from instrumental noise is
added (10,37,38,52):

r(r) = % /7 r(s)ds+ & (1)

at time ¢, with & independent of r. The time average in Eq. 1 results in mo-
tion blur or “dynamic errors,” whereas the added noise produces the “static
errors” that would occur even when locating an immobile particle (37).
The validity of the various assumptions (properties of &, statistics of illumi-
nation and detection, etc.) leading to Eq. 1 has been discussed elsewhere
(37.53).

Most relevant to quantify the static error is the noise covariance matrix,
E = (EET), where £ is the transpose of £, and (++-) is the average. The
noise covariance matrix can often be written E = &I (with I the identity
matrix) in two-dimensional (2D) particle tracking, in which the static errors
are isotropic in the observation plane (37). In that case, ¢ is the spatial res-
olution of the tracking method, and together with the detector exposure time
g, they quantify the two common sources of errors in particle tracking.

We denote the observed PDF of the measured positions given by Eq. I as
fi. Applying f;(r) e 8V to this “apparent” PDF does not measure the
correct potential V in which the particles move but an apparent potential
V via

BV(r) = —In f:(r) + constant, 2

with an added, arbitrarily chosen constant that, unless stated otherwise, will
be ignored in the remaining.

We illustrate in Fig. 1 the effects of errors € and ¢ on a representative one-
dimensional (1D) potential: the exact potential is shown by the line, and the
measured potentials affected by motion blur or static positional uncertainty
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FIGURE 1 Effect of static and dynamic errors on a 1D po-
tential mapping. The trapping energetic landscape, BVgs(x) =

2.5[tanh(3x/a — 4) — tanh(3x/a+ 4)], with @ = 160 nm, is shown with
the solid line and is chosen to resemble the slice of the 3D electrostatic
potential in a microfluidic trap as measured by Krishnan et al. (27) using
a 100 nm particle with diffusion coefficient D = 1.8 um? s~ (filled circles
are data reproduced from Fig. 3 of their study). The open symbols are
results of our simulations (see Simulations). The effect of errors shown in
their 3D experimental measurements is more pronounced than in our 1D
simulations, as the dimension may indeed change the magnitude of the
resulting artifacts (see 2D Potentials in Results and Discussion). To see
this figure in color, go online.



are given by the up and down triangles, which are obtained by Brownian
dynamics simulations (our algorithm is explained in Simulations; for illus-
trative purposes, the errors used here are larger than in the actual experi-
ments, where ¢ = 4 nm and ¢ = | ms). Although static errors tend to
apparently widen the potential (down triangles in Fig. 1), dynamic errors
produce the opposite (up triangles). These antagonistic effects were already
revealed when studying the propagation of the tracking errors to the
MSD (37). Near the potential’s minimum, static errors tend to slightly
narrow it, whereas motion blur gives rise to secondary minima, similar
to those observed by Krishnan et al. (27), whose experimental results
are shown with the filled circles in Fig. 1. The resemblance of these
artifacts indicates that motion blur is likely their cause in the
measurements. The latter are obtained from three-dimensional (3D)
tracking experiments, whereas the simulations are performed in 1D, and
the observed discrepancy in amplitude between the up triangle and filled
circle data may indeed come from this dimensional mismatch (see 2D
Potentials in Results and Discussion).

Apparent potential

The apparent PDF f; of measured positions can be analytically related to its
true counterpart f. under two main assumptions. First, we assume that the
tracked particle undergoes overdamped Langevin dynamics. Second, the
trapping potential in which the particle moves is considered smooth enough
to be approximated, within the typical width of static and dynamics posi-
tioning errors, by its second-order Taylor expansion. The approximation
of an overdamped (i.e., inertialess) dynamics is valid for most video-tracked
particles (micron-sized colloids or smaller globular objects such as pro-
teins). The condition of potential’s smoothness imposes upper bounds for
both ¢ and ¢, as we shall see below. Under these assumptions, we can obtain
an analytical relationship between f; and f,, the derivation of which is
detailed in Appendix A for an arbitrary number of dimensions. The result-
ing expression for the apparent potential V in multiple dimensions (the
particular 1D case is given later in this section), as obtained from f; using
Eq. 2, is

_ In det(Ug,) v A (Ug, —1I)v
V=V-— ; . 3
1% 2 + 26D 3)

Here det(---) designates the determinant of a matrix, D is the diffusion
coefficient (assumed to be constant) of the particle, and we have introduced
the convective velocity and the local relaxation matrix,

y = —BDVV (4a)

and

A = BDVVTV, (4b)

respectively (with 7 the nabla vector and 77 T the symmetric Hessian ma-
trix operator; A has the dimension of an inverse time). We have also defined
the following error-propagation matrix:

1

Up, = [2(64) (64 ~T+e ")+ AE/D] . (5

Note from this expression that Ugy = I, indeed leading to V = V in Eq. 3
when both E and ¢ vanish in the absence of tracking errors.

Equation 3 is valid for both shutter times ¢ and static errors small enough
so that, within the localization errors they induce via Eq. 1, third- and
higher-order variations in V(r) may be neglected. We write these conditions,
conservatively, as

Da||BVV | + VDo < |87 V| (6a)
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and

IE|'"? < 187V (6b)

Here, the elements (V3V),yk = 9’V /(0x;0x;0x;), and ||+ || designates
the maximum norm, that is, for a position-dependent matrix A(r) with ele-
ments A (r),

JA@) || = max [4; ()] ™

Y.

is the maximal absolute value of any elements of the matrix over the observ-
able space domain Q. The left-hand side of the inequality (Eq. 6a) repre-
sents the typical displacement of the particle during the time ¢, which
can be caused by the drift imposed by the trap (first term) and diffusion
(second term). Hence, the conditions (6) express the requirement for
the potential to be “resolvable” to its second order within the localization
errors corrupting the particle tracking. We verify in Appendix B that these
nontrivial conditions indeed provide correct limiting values for ¢ and &,
below which Eq. 3 is valid.

Another requirement for Eq. 3 to be applicable is Ug,=0 (positive
definite), which ensures that the logarithmic term is defined. The error ma-
trix E is positive definite, and we indeed verify that the same holds for the
o-term in Eq. 5. However, A does not have this property around local max-
ima or saddle points of V(r). In these cases, and under the additional con-
dition of a static error larger than a typical Brownian displacement
during the time o (i.e., € > \/D_a), we find that Ug , may not be positive def-
inite at these particular points (see an example in 1D Potentials, Fig. 2 A, in
the next section).

In 1D, we rename x; = x, and Eq. 3 is written

20,
Vv Inu., vV (ttes 1)’
28 26D

®)

with the convective velocity and the local relaxation rate, Eq. 4, defined in
1D using the first and second derivatives of V(x),

v = —6DV’ (9a)

and

A = BDV", (9b)
respectively. The error propagator, Eq. 5, now reads

Uy = [2(0A— 1+ ) /(a2)* + 3 /D] . (10)

Finally, in the 1D case, the conditions of validity become

Do||8V' || + VDo < [|gv" | " (11a)
and
e< 1BV, (11b)
with ||f(x) || = maxelf(x)|, and are supplemented by the requirement
that u, , > 0.

One can linearize Eq. 3 under the more constraining conditions
led|| < 1 and |4E/D|| < 1, to obtain
tr(cASg,) ov'Sg,v

V=V
Y 26D

12)
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with Sg, = E/(Do) —I/3 and tr(---) designating the trace. In particular,
Eq. 12 shows the opposite effects of static and dynamic errors on the
apparent potentials and that these errors can negate each other when &> =
Da/3, as also observed for the MSD of a diffusing particle (37).

Typical values of the errors are around € ~ 10 nm and exposure times ¢ in
the range of 0.1-1000 ms for modern CMOS (complementary metal-oxide
semiconductor) and CCD (charge-coupled device) cameras; the character-
istic width a of measurable potentials ranges from 100 nm to several
microns; and the usual diffusion coefficients of trackable microspheres
in a liquid at room temperature are in the range of 0.1-1 /.Lm2 s!
(23,24,26,27,54). Hence, in many instances, €< VDa<0.1a, and Eq. 3
should indeed be effective for most experimental settings.

Simulations

In the following, we verify the validity of Eq. 3 by comparing it with Brow-
nian dynamics (BD) simulations for several examples of potentials. An
explicit first-order time-stepping algorithm is used to advance the position
r(7) of a particle at time #: r(r + 6t) = r(¢) + £(¢)6t, where 6t is the time step
and £(7) satisfies the following equation (55):

r(t) = =D VPV (r(t)) + /2D/ot w(t), (13)

which assumes the drag on the particle to be Stokesian and neglects
any other hydrodynamic interactions. Here, w(f) is a stationary Gaussian
process that satisfies (w(f)) =0 and (w(H)w' (¢)) =1 if |t —7|<ét,
0 otherwise.

Each trajectory is 10° time steps long and is then transformed by calcu-
lating the average positions over nonoverlapping sets of n time steps,
F(t) = (n+ 1) _r(r — kbt) + £, where o = ndt defines the shutter
time and where the added static error & is a random, normally distributed
vector with (EET) = €2I.

In the remaining, we work with dimensionless quantities, for which the
unit distance a is the characteristic width of the potential trap (meaning
V(r| = a) — V(0) = 6", the unit energy is ', and the unit time is
a*/D. The dimensionless spatial resolution and shutter time are therefore
expressed e/a and Do/a®, respectively. For example, with the values used
in Fig. 1, one finds ¢/a = 0.3 (¢ = 50 nm and a = 160 nm) and Dola® =
03 (¢ =4 ms and D = 1.8 um* s "), as reported by the dashed lines in
Fig. 5 d for the same simulation data. In these units, 6 is chosen to be
5 x 1072 or less and 7 to be 100 or greater. We further verify, for each simu-
lation, that decreasing 6¢ and/or increasing n (while keeping the value ¢ of
interest conserved) does not significantly affect the results shown.

A histogram of the positions with a bin size <0.05 is then calculated, and
we verified that the observed PDF is independent of the bin size when it is
chosen in this range. The apparent potential is then extracted from the PDF
via Eq. 2. For all the examples investigated next, we also perform BD sim-
ulations without dynamic and static errors and verify that the correct poten-
tial is returned by our algorithm (see Fig. 3 a and the open squares in Figs.
1, 2, and 4). Furthermore, in all the simulation results presented here, error
bars are a fraction of the symbols’ size used in the plots.

RESULTS AND DISCUSSION
1D potentials

We now use Eq. 8§ to predict the shape of the apparent poten-
tial for a few 1D examples presented in Fig. 2 and compare
the results with the BD simulations described in the previous
section. In this figure, the lines are obtained from Eq. 8, and
the symbols are obtained from the simulations.

The first potential we consider is V(x) = X (Fig.2,aand b),
for which Eq. 8 is exact and indeed matches the simulations

g V(x) = —x* + 24"

a V(x) =¥

o=0 ,e=0

-a- 0=03,e=0

FIGURE 2 Comparison of Eq. 8 (lines) with BD simulations (symbols) for various ¢ and ¢, and under different 1D trapping potentials: V(x) = x> (a and b),
Vix) = x* (c and d), V(x) = (—x + M2 (e and ) and V(x) = —x + (g and h). The top panels (a, ¢, e, and g) investigate the motion blur with no static
errors. The bottom panels (b, d, f, and &) concern static errors under a fixed shutter time ¢ = 0.1. The conditions in Eq. 11 require ¢ < 0.05and ¢ < 0.3 for
(¢) and (d), ¢ < 0.07 and ¢ < 0.4 for (e) and (f), and ¢ < 0.03 and ¢ < 0.3 for (g) and (h). To see this figure in color, go online.
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for any values of € and ¢. This canonical harmonic potential,
indicating a linear elastic interaction, is ubiquitous in soft
biological systems (56) and in the optical tweezer
technique commonly used to probe them (57,58). For a
general harmonic trap with constant k, V(x) = kx*/2,
the apparent potential can be expressed, using Eq. 8,
as V(x) = kx*/2 with k = k/u., and for the relaxation
rate A = (BDk. Consequently, the apparent MSD of a
particle trapped in such potential will reach, at a
large lag time, a plateau 2/(8k) = 2g,/(8k) + 2¢* with
gs = 2(aA— 1+ e ") /(02)?, as already shown by Savin
and Doyle (37,38). Our formula in that case also justifies the
corrective approach employed by Mojarad and Krishnan
(26) to evaluate the stiffness of their trapping potentials via
the dependency of the MSD plateau with the camera exposure
time.

The second potential we examine is V(x) = x*, shown in
Fig. 2, c and d, and which has been investigated as a possible
confinement landscape for membrane proteins (12). This
trapping potential also resembles the interaction restricting
the motion of a particle attached to a substrate by a polymer
tether (59,60). The “tethered particle motion” technique has
been used in recent years to probe the mechanical properties
and interaction of various biological macromolecules (61).
Unlike the previous case of a harmonic potential, Eq. 8
is an approximation that fails for large values of ¢ or &
when the conditions expressed by Eq. 11 are not
satisfied. Accordingly, we observe discrepancies between
the predicted apparent potential and the simulations (see
the up triangle and plus sign data in Fig. 2, ¢ and d, respec-
tively). However, our formula correctly returns the existence
of two symmetric minima in the apparent potential as
observed in the simulation results (and similar to the data
presented in Fig. 1) and is accurate for lower (and typically
more experimentally realistic) values of ¢ and €. We also
note that near the potential’s minimum, the dynamic errors
tend to apparently widen the trap, with the static errors pro-
ducing the reverse. This behavior is indeed the converse of
what is seen on the higher parts of the trapping branches of
the potential (about B! above its minimum; see Fig. 1).

We also investigate an asymmetric potential, V(x) =
(—x + x*)/2 in Fig. 2, e and f, for which Eq. 8 also returns
an effective approximation of the simulation results when
o and ¢ satisfy the conditions Eq. 11. We study, in Fig. 2, g
and h, the potential V(x) = —x* 4+ 2x* which is a double-
well trap similar to ones observed in several biological sys-
tems (61,62). It is symmetric and displays a local maximum
at x = 0, which can be apparently hidden by the static errors
(see the diamond data, correctly predicted by our formula, in
Fig. 2 h). Also in Fig. 2 h, we show an instance in which
higher values of ¢ lead to u,, <0 and Eq. 8 is undefined
around the local maximum of V(x) (dashed line), as ex-
plained in Apparent Potential of Methods.

We note that overall, Eq. 8 is returning an effective
approximation of the apparent potential V, unless the static

Energy Maps from Noisy Particle Tracking

and dynamic errors originate from particularly large values
of £ and /Do, respectively, that is, greater than ~a/3.

2D potentials

We further extend our analysis to 2D potentials and confirm
the applicability of Eq. 3 in that case. Such potential maps
obtained in 2D (or 3D) can be used to characterize, for
example, the pore geometries in protein gels (63) or
receptors’ trapping in cell membranes (49,51,54,64). In
Fig. 3, we rename (x1,x;) = (x,y) and study the potential
Vir) = & + y)7? 4+ 33x%y — y)/4 (that is, V(r) =
r3[1+ (3/4)sin(36)] in polar coordinates r = (r, 6)),
which confines the particle in a trap shaped as a three-
pointed star.

We show that BD simulations (symbols) are indeed effec-
tively described by Eq. 3 (lines), even for values of ¢ and &
close to the limits set by Eq. 6. We further observe that the ef-
fects of the dynamic errors share features of the 1D case.
Hence, it also produces apparent local minima (see the con-
tours shown with the circles in Fig. 3, b and c), but the magni-
tude of these 2D dents in the potential map tends to be larger
than in their 1D counterparts under similar ¢ (compare Fig. 3 b
with the circle data in Fig. 2 ¢). This amplification of motion

2 2)3;2+3(3x2y_y3)/4

X X

FIGURE 3 Comparison of Eq. 3 with BD simulations for various ¢ and ¢
in the 2D trapping potential V(x, y) = (x* + y)¥? 4+ 3(3x*y — y*)/4. The
symbols are contours extracted from the simulations (squares for positive
level contours, circles for negative ones), whereas the lines are their coun-
terparts obtained using Eq. 3. (a)—(c) are for increasing dynamic errors but
no static errors, whereas (d) includes both effects. The cross indicates the
point (0,0), and the outermost contour is at V = 1.1 in all four panels.
The conditions of Eq. 6 require ¢ < 0.1 and ¢ < 0.5 over the observed
domain. To see this figure in color, go online.
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blur artifacts at higher dimension, which we have not assessed
in detail here, may indeed explain the difference between the
experiments and simulations presented in Fig. 1. Motion blur
also modifies the overall shape by sharpening and extending
the corners while narrowing the side edges (compare Fig. 3,
a—c with increasing ¢ and no static errors). This observation,
in particular, does not qualitatively align with the results re-
ported by Ritchie et al. (39) for particles trapped in a square
well (region of free diffusion bounded by impenetrable walls;
our model, derived for smooth potentials, cannot be applied
for this situation), in which case the apparent potential tends
to be harmonic like. These dissimilarities indeed highlight
the nontrivial effects of motion blur.

The static errors have the opposite effect in the
observed range of potential near its minimum, at which
the corners appear flushed (compare Fig. 3, b and d) and
the trap narrower. At higher values of the potential, this ef-
fect reverses and the potential indeed appears to be
widened by the static errors (although, overall, narrowed
by the dynamic errors).

Interaction potential

Equation 3 is written for a Brownian particle diffusing in a
trapping potential V. However, it is also correct for a system
of two Brownian particles with trajectories r;(¢) and r,(?)
in a mutual interaction potential V(|r; — r2|). One only
needs to replace in Eq. 3 the diffusion constant D with
the sum of the diffusion constants of the two particles
D, + D, and the noise covariance matrix with the sum of
the individual noises E; + E,. If the particles are identical
and tracked in 1D or 2D, the substitutions are D — 2D and
£2—2¢%,

This reasoning is valid, because Eq. | can also be
written identically for the two-particle system, with

a b V(d) = VDLVO(d)
A = I¢r=() ,£='0
| > [>
£I9 1‘0 1I1 0.0 015 110 1.5
d d

FIGURE 4 Comparison of Eq. 8 with the simulations of two
identical Brownian particles interacting via the potential V(d) =
(d — 10)* (@) and via V(d) = VpLvo(d) = 250e~'% /(d + 10) — (50/3)/
(d 4+ 10)* — (50/3)/(d? + 20d) — (1/3)In[(d* + 20d)/(d + 10)*] (b). In
both panels, the symbols are BD results, and the lines are calculated using
Eq. 8 with the substitutions D — 2D and &2 — 2¢%. The conditions in Eq. 11
require ¢ < 0.01 and ¢ < 0.2 for (b). To see this figure in color, go online.
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r =r; — rp, now representing the separation between the
interacting particles and with the added individual noise
vectors §; and &, assumed to be mutually independent.
The system’s dynamics are now also governed by
Eq. 13 for the particle separation r(f), with D replaced
by D, + D,, as obtained by subtracting each BD equation
describing r(¢) and r,(¢). From there, the derivation of
Eq. 3, as described in Appendix A, proceeds in an iden-
tical manner.

We numerically verify Eq. 8 for two interaction potentials
between identical particles in 1D motion, and the results
are presented in Fig. 4. The first potential models two
particles connected by a linear spring with rest length 10,
V(d) = (d — 10)?, where d is the distance between the par-
ticles’ surfaces. For this harmonic potential, Eq. 8 is exact
(see Fig. 4 a) for all values of ¢ and . We perform this simu-
lation to verify that the substitutions D —2D and &> —2¢”
are indeed correct.

A relevant interaction in colloidal science is modeled by
the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory.
For a typical system of trackable particles, the potential
may be written as (22):

—d/p A 2 2 2 2
pe ¢ p o
Vowvo(d) = -
pivo(d) Yd+2p 6 (d+2p)2+d(d+4p)
d(d+4
IHLPZ) ,
(d+2p)

(14)

where p is the particles’ radius, d + 2p is the distance
separating the two particles’ centers, Ap is the
Debye length, A, is a constant of the screened
Coulomb repulsion, and A. is the Hamaker constant.
For a realistic example, with p = 500 nm latex particles,
having 10™* Cm™? charge density, and immersed in a
1:1 electrolyte with 107> M ionic strength, then
Jp = 10 nm, A, = 50 ', and A, = 287" (22,65). To
perform simulations of two Brownian particles interacting
with this potential, we set the unit of length to a = 10Ap
(see the resulting dimensionless expression of Vpryo(d) in
the caption of Fig. 4). The particles are further trapped by
a parabolic branch for d > 5a, which mimics the effect of
the line-scanned optical tweezer used to perform experi-
mental measurements of this kind (24).

The results of our simulations for the DLVO potential are
shown in Fig. 4 b, and Eq. 8 is in reasonable agreement with
these data. The effect of dynamic errors is to apparently
deepen the interaction potential, shorten its range and
steepen its variations around the minimum (see down
triangles in Fig. 4 b). Such qualitative differences between
true and observed potentials would also occur with interac-
tions of similar profiles in the attractive range (e.g., deple-
tion interaction). These discrepancies indeed resemble
previously reported mismatches between the experiments



and theory (25,66), which may also be the result of dynamic
errors in the measurements.

Corrections

In principle, Eq. 3 is a differential equation that could be
solved numerically for V after measuring V, with a set of
boundary conditions (one of which would arbitrarily set
the value of Vat a particular location). We could not, how-
ever, implement a systematic and general solution using
common solver packages. Instead, we have developed a
provisional procedure, which first allows for preliminary as-
sessing if positioning errors are significant in the measure-
ments and then for obtaining an estimation of the true
potential from the apparent potential if the role of these
errors is estimated as important.

The measured potential must be first fitted by a power
series, using any built-in package for polynomial fitting in
the data analysis software. To assess if motion blur can be

neglected, one can apply the transformation V Bl y
described by Eq. 3 to the fitted apparent potential, that
is, calculating the “transformed apparent” potential V via

v "7 V_If differences between V and V are within experi-
mental error bars, no correction needs to be applied. This
reasoning is justified by the fact that the transformation
described in Eq. 3 affects the function it is applied to by a
comparable magnitude when applied for the second time
compared to when it is applied for the first time, as we have
numerically verified. Hence, if the differences between vV

and V are negligible, so will be the changes between Vand V.

If applying Eq. 3 to the apparent potential recovered from
data shows changes exceeding experimental error bars, one
can estimate the true potential by applying a polynomial co-
efficient fitting of Eq. 3. For example, ifin 1D ||o2 | <1 and
¢* < Do, one can efficiently approximate Eq. 8 by the

following:

_ A—ov?/D
gv :,8V+sm%
s a?W? /D
- 2)——(1—122)— 15
—i—( 6s£70 7 Seq Y (15)
L4105, — 6og2 ) ZA/D
(14108, - 6052, ) TG e

with s, = €2/(Da) — 1/3, as obtained by a second-order
expansion of In ., and (u., — 1)/(dA) in oA (one order
beyond Eq. 12). In the above equation, ¢ is the constant
found in Eq. 2. We next write 8V (x) = Zﬂzzofk(x/a)k and
BV(x) = ’,Z:Ock(x/a)k as two polynomial expansions of
degree p and where {Ek}k:O‘..p are the fitting parameters
for the measured potential. Upon substituting these expres-
sions into Eq. 15, and comparing the polynomial coeffi-
cients, we obtain a system of equations
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ﬁ)(ca Cp, C1, CZ) = EO

filer,ea,03) = @
f['773(cla--'acp71) = Ep737 (16)
fp_2 Cly..sCp) = Ep_z
fp*l Cly.esCp) = Ep*l
hle,..,0) =6

where the functions {fi},_, , can be obtained using a sym-
bolic mathematical software. These are p + 1 equations for
the p + 2 unknowns c,cy,cy,...,cp, the missing equation be-
ing the one that sets ¢y, which can be assigned arbitrarily by
choosing, for example, V(0) = V(0) (that is, co = o). This
well-posed system can then be numerically solved to obtain
the coefficients {c¢};_, , of the original potential from
the fitting parameters {C¢};_, , and the known values of
o, &, and D.

We distribute through GitHub (https://github.com/
savin-lab/potential-correction) an implementation of this
method, which we apply in Fig. 5 to several of the canonical

a V(x) = x* b V(x)=(-x+x"/2
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FIGURE 5 Corrections of the errors using polynomial fitting. In all
panels, the solid lines show the original potentials, and the dashed lines
are polynomial fits of the apparent potentials (designated as “app.” in the
legend) as measured from simulation data affected by the indicated dy-
namic and static errors. For each set of errors, the symbols show the cor-
rected potentials (“corr.” in the legend) using polynomial coefficient
fitting following Eqs. 15 and 16. (a) uses data for V(x) = x* (see Fig. 2, ¢
and d), (b) is for V(x) = (—x + M2 (see Fig. 2, e and f), (c) for V(x) =
—x* + 2x* (from Fig. 2, g and h), and (d) for V(x) = Vgs(x) as defined
in the caption of Fig. 1, with a = 1. To see this figure in color, go online.
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potentials investigated in this study. We observe that we can
indeed recover the appropriate profiles, notably eliminating
the apparent double potential wells (see Fig. 5 a for ¢ = 0.1
and ¢ = 0 and Fig. 5 d for ¢ = 0.3 and ¢ = 0), and, on the
contrary, restoring lacking features of the true potential that
are flushed by the static errors (see Fig. 5 ¢ for ¢ = 0.1 and
e = 0.3). The residual discrepancies observed in Fig. 5, ¢
and d may result from using the approximation given by
Eq. 15 and/or the inaccuracy of the polynomial fits.

Here, the polynomial fits are obtained for power series
with degree p between 6 and 12, chosen so as to obtain
the best match with the original potential. However, a
prior knowledge of the probed potential is normally not
available. In practice, we anticipate that the best choice
of p reflects a compromise between fitting the experi-
mental data as accurately as possible without capturing
features originating from statistical uncertainty over small
length scales. A natural criterion for choosing the fitting
length scale, and hence p, could be based on the terms
of Eq. 11 that sets the validity of Eq. 8 and that is verified
in Appendix B.

We shall deal with this issue in more detail in the course
of analyzing published experimental works that could be
affected by tracking errors. Although our findings prove
the validity of the inversion approach, more effort is
required to offer a systematic and robust numerical method
to recover V from V.

CONCLUSIONS

We have determined the effects of dynamic (resulting from
motion blur) and static (resulting from instrumental noise)
errors on recovering energy landscapes from measured
Brownian-particle position distributions. We have shown
that these two phenomena are the source of nontrivial, sys-
tematic biases in the measurements, potentially leading re-
searchers to read out and interpret an incorrect apparent
potential. In particular, we have described the phenomenol-
ogy of these effects in more detail on some canonical trap-
ping potentials: harmonic, double well, asymmetric, and in
1D and 2D as well as interaction potentials. For the har-
monic case, the contaminated potential is also harmonic
with an apparent stiffness constant that can be exactly
calculated.

Estimating if static and dynamic errors significantly skew
measurements in a given system can be carried out using our
results. Equation 3 for predicting the apparent potential is
accurate for many setups and easily implemented for a
wide class of examples. Inverting it to obtain the true poten-
tial from the apparent potential poses a challenge for numer-
ical mathematics. We also proposed in this study a practical
strategy to perform this task, although further work is
needed to achieve a stable and accurate reconstruction
method and assess its performances under real-world exper-
imental conditions.
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We conjecture that the effects of these measurement er-
rors may have been overlooked in some existing experi-
mental works (25,66). Hence, we recommend that the
effects of these errors should be assumed to be one of the
possible explanations for unexpected results obtained
when using particle-tracking methods. Including explicit in-
formation about the shutter times used, tracking parameters,
and noise characterization (48) should now become a stan-
dard practice in reporting research involving Brownian-par-
ticle video tracking.

Further research needs to be carried out in this direction.
Our study should be followed by a detailed review of exist-
ing experimental results. As already mentioned, it is also
necessary to develop systematic algorithms to invert
Eq. 3 for calculating the true from the apparent potential,
V—>V. Our provisional method has indeed significant
shortcomings, which are explained in Correction.
Furthermore, this type of error propagation analysis should
also be made for the other observables (e.g., pair or van
Hove correlation functions (67), two-point microrheology
(68), etc.) that are extracted from Brownian-particle-
tracking data.

APPENDIX A: DERIVATION OF EQ. 3

For a single particle in an external potential, we start by writing the moving
average of particle positions in Eq. 1, which represents data collected dur-
ing a single shutter time, as the limit of a discrete series of n 4 1 successive
positions taken by the particle every ¢/n time unit, added to a noise term

F(1) = lim ! Z ri(r) +&, a7

n—wn -+ 1 e

where ry (1) = r(t — 0 + ko /n) such that ro(¢) = r(t — o) and r, (1) =r(z).
The particle is assumed to obey the inertialess (i.e., overdamped) limit
of the Langevin equation in an external potential. Consecutive positions
in the series forming ¥(¢) are almost surely located infinitesimally close
to each other when n is large. Therefore, the motion between them can
be treated via the BD,

r, = I — (O'/n)ﬁD VV(I'](,I) + 2D0'/I’l W, (18)

where w is a vector realization of a delta-correlated, stationary Gaussian
process with zero mean. Hence, fyy (w) = N (w; 0,1) and the autocorrelation
(w(O)wT () =1 if |t — /| <a/n, 0 otherwise. We here employ the usual
notation for the d-dimensional normal distribution with mean vector pu
and covariance matrix X,

o W = w2

Nemws) =
i E) = ez

Each position r; is now assumed to be in the vicinity of r( so that we
may linearize the force BDVV(r') = —vo + Ao(r' — ro), where we have
used the notations

Vo = V|,:r0
Ay = A|

r=ry



for v and 4 as defined by Eq. 4 in Apparent Potential. The subscript “0”
indicates that these are evaluated at ry. The conditions for this second-order
expansion of V to be valid are given by Eq. 6.

The conditional PDF fyp (r|r’) = fip (r,7’) /fr(v’) is written in terms of
the joint PDF f;. v and the marginal f,-. From Eq. 18, it follows that

f;'klrk—l(r|rl) = N(r;Anr/+bn,2D0'I/n),

with A, =1 —0ddy/n and b, = o(vo+ Aoro)/n. Recursively using

Jees () =[S feutei,(710) fe i > (plF')dp and exploiting the proper-
ties of Gaussian integrals, we get the following for any £ > j > 0:

k—j—1 k—j—1
CAk—) i g 2
f;‘/“l‘j(r|r/) = N r’An /r/+ ;A"b}UZDZ ;An

This equation allows us to calculate fr, |y, and fr, r;jr, = fr|r; Ji;|r, fOr any
k> j = 1. All are normal distributions, and so will be fz|,. Further using
the matrix’s geometric series Zj‘;olAf" = (I-A,)""(I - A"), the matrix
exponential limit, lim,— . (I —A/n)" = ¢4, and accounting for static er-
rors by adding E = (EET) to the covariance matrix of the measured posi-
tion, we finally obtain

ag
Fein(rlr0) = N (rir0+ 5 Govo, Do, + E),

where G, = G(o4y) and H, = H(cAy) with

GX) =2X*(X—1+e),
HX) =2X7-X 3Bl -e™)(I-e™).

Wenow usef;(r) = [[[ f¢ Iro (7 [70) fro (ro)d*ro, wherefy, (ro) =foe AV,
with fj a constant, to calculate the apparent distribution. We may use again the
expansion

BDV(ro) = BDV(r) v (ro —r) + 5(ro — 1) Alro ),

vo =v—A(rg—r),

Ay = A,

where v and A are evaluated at r. The resulting integral reads as follows,
after the change of variable p =ry—r:

foe
(2m)*?det(DoH, + E)"*

///eXp{_ [p+56:tv = 45)] '(DoH, + E)”

T T

Gy — e _pArlg
[p+2G,,(v Ap)}—i— D D }dp.

fr =

The above Gaussian integral (with a linear term) can be calculated. After
noting the relation [I — XGX)2)? = G(X) — XH(X), we finally obtain

foe B vTA’l{(GUJr%Y1 fl}v
= expq — :
det(Go —|—%)1/2 2D
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from which Eq.
(G, + AE/D)™".

3 can be readily deduced upon defining Ug, =

APPENDIX B: CONDITIONS OF VALIDITY

We here assess the ranges of ¢ and ¢ for which Eq. 3 can be used. The ex-
amples investigated in the main text suggest that the conditions of validity
Eq. 6 provide appropriate estimates for the maximal values omax and enmax
below which Eq. 3 can indeed be used. To assess these limiting values in
a systematic manner, we simulated a Brownian particle trapped in the po-
tential V(x) = X2 + [cos(2mkx) — 11/8, for k = 1...7, with increasing values
of ¢ and of . Increasing k for this potential increases the level of details that
needs to be resolved by the particle tracking methods (compare Fig. 6 a,

V(x) = x> + [cos(2nkx) — 1]/8

W

i

10* 10° 102 10" 10° 1.2 3

4
k
x o=0
o ¢=0.001
]
£10"}
©
. X 020
10 10" 10° 12 3 4 5 6 7
£ k

FIGURE 6 Assessing the conditions Eq. 6 by quantitatively comparing
Eq. 8 to BD simulations for the trapping potential V(x) = ¥ o+
[cos(2mkx) — 1]/8, with k = 1...7. (a) and (b) show the simulated apparent
potentials (symbols) and our approximated expression (l/ines) for increasing
values of ¢ and with e = 0 (k = 2 in (a), k = 6 in (b)). The discrepancy is
quantified by min xfed, defined in Eq. 20, whose variations with ¢ and k are
shown in (c) (values of k displayed on each corresponding /ine). (d) shows
the range omax (below which Eq. 8 is effective) as a function of , as defined
by the threshold min x2, = 10 (symbols) and as obtained by Eq. 11a (line,
see text). (e) and (f) give the same quantities as (c¢) and (d), respectively, to
compare the range of static error &y,x evaluated from min x%, = 10 and
Eq. 115 for the displayed values of ¢ < omax. To see this figure in color,
go online.
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where k = 2, with Fig. 6 b, where k = 6). For this potential, we test our pre-
dictions for o,x and enax obtained by equating both sides in each Eq. 11, a
and b,

(2 + 7k /4) O + 02 = (k)™ (19a)
and
Emax = (k) (19b)

respectively. The amplitude 1/8 of the oscillations around the term x” in the
potential is such that no term may be neglected in Eq. 19.

The simulation results (symbols in Fig. 6, a and b) are then compared to
the apparent potential V predicted by Eq. 8 (lines in Fig. 6, a and b). Spe-
cifically, the discrepancy between the simulations and Eq. 8 is quantified by
the reduced chi-squared X2, defined as

N AV

szed :]%]Z J_‘

= varV

(20)

Here, {4V} —1...y are the differences between the simulations and Eq. 8
at the N locations output by the simulations, and {varV;},_; , are the
variances of the simulated data at these locations. The arbitrary constant
in Eq. 2 is chosen beforehand to minimize x2;, so that we designate as
min 2, our measure of deviation of Eq. 8 from the simulations.

As o increases, the approximation fails above a value gy, that is deter-
mined by min szed = 10, as indicated in Fig. 6 ¢ (69). The results for o,y
are compared favorably to the solution of Eq. 194, shown by the line in
Fig. 6 d for various values of k. The same procedure is applied to evaluate
a maximal static error em,y for each k = 1...7 (Fig. 6 e) and compare it with
the result of Eq. 195 shown by the line (Fig. 6 f). We further verified that the
latter results do not depend on ¢ < G ppyx.

We have thus confirmed that Eq. 6 provide effective estimates for the
range of validity of Eq. 3.
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