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Local equilibrium of the Gibbs interface in two-phase systems
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Abstract – We analyze the local equilibrium assumption for interfaces from the perspective of
gauge transformations, which are the small displacements of Gibbs’ dividing surface. The gauge
invariance of thermodynamic properties turns out to be equivalent to conditions for jumps of bulk
densities across the interface. This insight strengthens the foundations of the local equilibrium
assumption for interfaces and can be used to characterize nonequilibrium interfaces in a compact
and consistent way, with a clear focus on gauge-invariant properties. Using the principle of gauge
invariance, we show that the validity of Clapeyron equations can be extended to nonequilibrium
interfaces, and an additional jump condition for the momentum density is recognized to be of the
Clapeyron type.
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Introduction. – Interfaces possess interesting ther-
modynamic properties that do not exist in bulk phases.
A typical interfacial effect with many observable conse-
quences is the surface tension of a liquid-gas interface.
Can the concept of surface tension be generalized from
equilibrium to nonequilibrium situations? Since we would
expect the surface tension to depend on temperature,
what kind of temperature shall we assign to interfaces in
nonequilibrium situations? Interestingly, interfaces possess
thermodynamic properties that do not coincide with the
corresponding properties in the surrounding bulk phases.
In this regard, the most important thermodynamic prop-
erty characterizing the state of an interface in a pure
two-phase system is its temperature, which may not
even lie between the temperatures of the adjacent bulk
phases [1,2].
The classical approach to describe equilibrium interfa-

cial thermodynamics in phase coexistence relies on the
arguments of Gibbs [3], who considers the interface as a
separate 2D thermodynamic system which can be char-
acterized in terms of excess densities. A nonequilibrium
thermodynamic description of interfaces based on Gibbs’
approach has been developed by Bedeaux and cowork-
ers [4–6]. The main challenge is to generalize the concept of

(a)E-mail: savin@mat.ethz.ch

local equilibrium, which is known to be a key ingredient to
the nonequilibrium thermodynamics of bulk systems [7,8],
to interfaces [9,10]. Even when in contact with nonequi-
librium bulk phases, interfaces quickly relax to states that
can locally be described by the same set of variables
as equilibrium interfaces, with the same thermodynamic
relations between these variables. Interfaces are always
controlled by their bulk environments so that intensive
variables play an important role in understanding interfa-
cial thermodynamics and statistical mechanics.
Several studies have investigated the validity of the

local equilibrium hypothesis. For instance, the hypoth-
esis has been supported by nonequilibrium molecular
dynamics simulations [11–13] and by the van der Waals
square-gradient model [1,2]. However, such tests are very
subtle. From a practical point of view, it is not clear how
to extract a meaningful nonequilibrium interfacial temper-
ature from the transition behavior of the kinetic temper-
ature, which is typically used in molecular dynamics
simulations. More fundamentally, excess densities are
known to depend on the precise choice for the location
of the interface [6,7,14–17]. How can we deal with this
ambiguity in going from global to local equilibrium? Is
there a unique or convincing way to implement local
equilibrium? What are the observable consequences of
local equilibrium?
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Providing conceptually clear definitions of the interfa-
cial temperature, chemical potential and other thermo-
dynamic quantities is essential to understand and build
a thermodynamically consistent description of interfacial
phenomena. Further outlining rational and efficient ways
to measure these quantities is equally important in view
of the numerous instances of interfacial phenomena in
engineering applications [18–24]. In heterogeneous catal-
ysis, for example, the reaction occurs at interfaces, and
one may want to quantify its efficiency as a function
of the interfacial temperature. Also in the layers of fuel
cells, typically operating at high current densities, the
water density varies from a vapor to a condensed phase
across the catalytic layer. In these truly nonequilibrium
situations, could the density profiles, more easily quanti-
fied [25], be used to predict the interfacial temperature?
In this paper, we analyze the effect of small changes

in the choice of the interface’s location in nonequilib-
rium situations. We refer to such small displacements of
the interface as gauge transformations. Whereas excess
densities may often change under gauge transformations,
the principle of gauge invariance should be obeyed by
all static and dynamic descriptions of equilibrium and
nonequilibrium interfaces. We here employ the principle
of gauge invariance to strengthen the conceptual clarity of
the description of nonequilibrium interfaces and, in partic-
ular, of the local equilibrium hypothesis. In that sense,
we separate the gauge-variant and -invariant aspects of
the Gibbs-like approach also for nonequilibrium interfaces,
and we draw a complete and consistent description of the
gauge-invariant thermodynamic properties of the inter-
face. We notably find that these properties are governed
by the same relations whether the total system is at or
away from global equilibrium.

Thermodynamic description of interfaces. – To
prepare our efforts to develop a thermodynamic charac-
terization of interfaces that can be used in dynamic theo-
ries of multiphase systems in nonequilibrium situations,
we first recall Gibbs’ classical description of interfaces
at equilibrium [3]. We then discuss some possible issues
related to the idea of local equilibrium of interfaces, and we
finally resolve these issues by means of the gauge transfor-
mations associated with atomistic displacements of inter-
faces. In particular, we obtain a compact characterization
of the gauge-invariant thermodynamic properties of local
equilibrium interfaces. For reasons of clarity, we restrict
ourselves in this section on the conceptual foundations
to single-component systems. The more relevant case of
multicomponent multiphase systems will be discussed in
the next section.

Equilibrium. Consider a system consisting of two
coexisting bulk phases α and β, separated by an interface
of area A, in global equilibrium. An increase in the internal
energy of the system dU is then expressed as dU =
TdS− pdV + γdA+mµdN , which defines temperature T ,
pressure p, surface tension γ and chemical potential µ

in terms of the changes of U associated with changes
in entropy S, volume V , surface area A, and number of
particles N , each of mass m. Assuming global equilibrium
and a planar separating surface, p, T and µ are constant
throughout the two-phase system and the surface tension
γ is uniform over the interface. We thus “do not need
to ask what the values of p, T and µ at the interface
are” [26]. Making proper use of the extensivity of U ,
S, V , A and N , we further obtain the Euler equation
for the entire system at equilibrium, U = TS− pV + γA+
mµN . The total extensive properties of the system can
be written as U =Uα+Uβ +U s, S = Sα+Sβ +Ss, N =
Nα+Nβ +N s, and V = V α+V β , where the superscripts
α, β and s indicate the two bulk phases and the surface
respectively. For example, the sum of the internal energy of
the bulk phases, Uα+Uβ differs from U by an interfacial
term U s. These splittings of the extensive quantities will
in general depend on the precise position chosen for
the dividing interface, as we will later discuss in detail.
The thermodynamics for each equilibrium bulk phase
leads to dU i = TdSi− pdV i+mµdN i and U i = TSi−
pV i+mµN i for i= α,β. Using the above expressions, one
obtains the Euler and Gibbs-Duhem equations for the
interface in global equilibrium,

us = T ss+ γ+µ ρs, (1a)

0 = ss dT +dγ+ ρs dµ, (1b)

where the excess surface densities are defined by us =
U s/A, ss = Ss/A and ρs =mN s/A.
According to the Gibbs phase rule for two-phase coex-

istence of a single-component system, µ depends on T
and hence also γ is a unique function of T . Therefore,
the temperature T , the chemical potential µ(T ), and the
interfacial tension γ(T ) in eqs. (1) are well-defined ther-
modynamic properties of the interface, whereas the excess
densities us, ss, and ρs depend on the choice of the divid-
ing surface. It is quite remarkable that the ambiguous
(later called “gauge variant”) excess densities and the well-
defined (later called “gauge invariant”) properties T , µ,
and γ are related by the Euler and Gibbs-Duhem equa-
tions in very much the same way as the unambiguously
defined, observable densities and intensive properties of
bulk systems. The loss of one thermodynamic degree of
freedom for phase coexistence according to the Gibbs
phase rule is reflected in a one-parameter family of gauge
transformations associated with small displacements of
the interface. It would be desirable to have a thermody-
namic characterization of interfaces that focuses on the
gauge-invariant properties.
According to the Clapeyron equations [26], the func-

tional form of µ(T ) contains important information about
the “jump ratios” at two-phase coexistence. Calling ∆ρ=
ρα− ρβ , ∆s= sα− sβ , and ∆u= uα−uβ the jumps of the
bulk densities ρi =mN i/V i, si = Si/V i, and ui =U i/V i
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Fig. 1: (Colour on-line) Hypothetical nonequilibrium profile of
mass density, or temperature, in the diffuse interface model
(top) and in the sharp interface model (bottom). In the diffuse
model, the transition between two bulk phases occurs over a
very small length scale (in numerical calculations, one often
chooses length scales much larger than the physical nanometer
scale indicated in the figure). Defining a unique temperature of
the interface with true thermodynamic significance is a chal-
lenge. In this article, we adopt the sharp interface approach,
considering the interface as a 2D system with its own density,
temperature, . . . .

(for i= α,β) across the interface, we calculate

dµ(T )

dT
=−∆s
∆ρ
, (2a)

µ(T )−T dµ(T )
dT

=
∆u

∆ρ
. (2b)

In other words, the jump ratios can be readily calculated
from the chemical potential µ(T ) at phase coexistence;
hence they are predictable functions of the interfacial
temperature.

Local equilibrium. The fact that the temperature T
and the chemical potential µ are uniform throughout a
heterogeneous equilibrium system is a central point to the
approach of Gibbs recalled above [26]. In nonequilibrium
situations, these quantities are not constant, and thermo-
dynamic relationships must be established in a local form,
using densities of the extensive properties, like in eqs. (1),
and adopting equilibrium at a local scale. Using this
assumption of local equilibrium, the interface possesses its
own thermodynamic properties, such as temperature T s

and chemical potential µs, governed by equilibrium equa-
tions of state while not being conditioned by an equilib-
rium environment. Across the interface, we do not assume
the continuity of the intensive quantities: their value in
the interface can, under nonequilibrium conditions, differ
from the values in the adjacent bulk phases. For example,
one usually has T s "= Tα, T β , even if Tα, T β are evaluated
in the vicinity of the interface, as illustrated in fig. 1; the
interfacial temperature T s may not even lie between the
bulk temperatures Tα and T β .

In nonequilibrium situations, one can still define1 the
interfacial excess densities of the energy, us, entropy, ss,
and mass, ρs per unit area, as well as the excess paral-
lel pressure ps‖ =−γ. Similar to the equilibrium case, us,
ss, and ρs may depend on the location of the dividing
surface. However, the definitions of T s, µs, γ, and of the
interfacial velocity vs, which are measurable quantities,
should not depend on the chosen position of the divid-
ing surface. References [1,2,23] present definitions of the
interfacial quantities that fulfill these requirements. But
how should we implement the local equilibrium assump-
tion in a full dynamic theory for nonequilibrium systems?
Can we postulate the validity of all equilibrium equations
of state relating, with no distinction, gauge-variant and
gauge-invariant properties without violating the principle
of gauge invariance for a dynamic theory? This would be
equivalent to assuming eqs. (1). Should we expect only the
equilibrium relationships between gauge-invariant prop-
erties to be valid? Or should even the Clapeyron equa-
tions (2) remain valid in nonequilibrium situations? The
latter go beyond eqs. (1) because they express relation-
ships between interfacial and bulk variables rather than
relationships between interfacial variables only. Should the
Clapeyron equations be modified, say by velocity differ-
ences? Or should there be an additional Clapeyron-type
equation for the jump in the momentum density? All these
questions are answered in the following section.

Gauge transformations. Both in equilibrium and in
nonequilibrium systems, the calculation of excess densi-
ties starts by choosing a dividing surface. As this choice
is essentially a mathematical construct, measurable prop-
erties of the interface, like for instance the reflection of
light [27], the velocity and the temperature, must be inde-
pendent of this choice. It is therefore appropriate to call
the change from one dividing surface to another one a
“gauge transformation.” Choosing a particular dividing
surface is like fixing the gauge. A shift of the dividing
surface over an atomistic distance % toward the phase α
will change, for instance, the excess momentum density
Ms and the excess mass density ρs of the interface to other
values Ms

′
and ρs

′
given by [28]

Ms′ =Ms+ %∆M, (3a)

ρs′ = ρs+ %∆ρ. (3b)

Here ∆M=Mα−Mβ and ∆ρ= ρα− ρβ are the jumps
of bulk densities across the interface in equilibrium or
nonequilibrium situations. Similar transformations are
obtained for the other excess densities. The quantitiesMs,
ρs, us and ss are thus called gauge variant. For the excess
parallel pressure ps‖ =−γ of a planar interface, we find that
γ is independent of the position of the interface, that is,
gauge invariant. Other examples of gauge-invariant prop-
erties are the velocity, the temperature and the chemical

1Note that we will not explicitly indicate here the possible spatial
and temporal dependency of the nonequilibrium thermodynamic
quantities.
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potential of the interface. From the gauge invariance of
vs =Ms/ρs, we first conclude that ρs = 0 impliesMs = 0.
Starting from a gauge with ρs = 0 and making use of the
transformation rules (3), we find

vs =
Ms′

ρs′
=
∆M

∆ρ
. (4)

We thus arrive at a Clapeyron-type relation involving the
jump of the momentum density from one bulk phase to the
other. Note that the principle of gauge invariance requires
the identity (4) for nonequilibrium jumps; at equilibrium,
this identity becomes trivial.
More generally, ratios of jumps in the densities of

the bulk extensive quantities from one phase to the
other play a crucial role for gauge invariance. Indeed, by
characterizing different gauges in terms of the excess mass
density ρs rather than the position of the Gibbs surface,
we can, for example, rewrite gauge transformations of the
type (3) for the excess entropy and energy densities as

ss(T s, ρs) = ss(T s, 0)+
∆s

∆ρ
ρs, (5a)

us(T s, ρs) = us(T s, 0)+
∆u

∆ρ
ρs, (5b)

both for equilibrium and for nonequilibrium interfaces.
The local equilibrium assumption states that the relation-
ships ss(T s, ρs) and us(T s, ρs) are given by the equilibrium
equations of state and it hence implies that also the jump
ratios ∆s/∆ρ and ∆u/∆ρ in eqs. (5) must be given by
their equilibrium values, that is, by the Clapeyron equa-
tions (2) in terms of µs(T s). The occurrence of jump ratios
in eqs. (5) and also their values at equilibrium follow as
a consequence of gauge invariance2. Whereas the usual
derivation of Clapeyron equations is based on a direct
comparison of coexisting bulk phases, gauge invariance
focuses on the interfacial properties and their dependence
on the precise location of Gibbs’ dividing surface. Follow-
ing the idea that local equilibrium is a consequence of
fast relaxation of the interface, we expect that not only
jump ratios but even the jumps themselves are given by
the proper equilibrium values. This conjecture has been
verified for the van der Waals square-gradient model [1,2].
Equations (5) express the interplay between gauge-

invariant and gauge-variant properties. The gauge ρs = 0
is of particular importance. By choosing ρs = 0 in eqs. (1)
we obtain

ss(T s, 0) =−dγ(T
s)

dT s
, (6a)

us(T s, 0) = γ(T s)−T s dγ(T
s)

dT s
. (6b)

Equations (6) show that, if one separates the entropic and
energetic contributions to the gauge-invariant interfacial
tension γ by means of its temperature dependence, one

2Note that the gauge invariance of the Gibbs-Duhem
equation (1b), 0 =∆sdT +∆ρ dµ, implies the Clapeyron
equation (2a); the gauge invariance of the Euler equation (1a),
∆u= T ∆s+µ∆ρ, further implies (2b).

obtains the excess densities of entropy and energy in the
special gauge ρs = 0 occurring in eqs. (5). We are actu-
ally led to a characterization of the thermodynamics of
local equilibrium interfaces that focuses on the gauge-
invariant information and allows us to superimpose gauge-
variant information in terms of the jump ratios governed
by the Clapeyron equations (2). Local equilibrium can
thus be fully and consistently implemented in nonequi-
librium gauge theories, including the equilibrium Clapey-
ron equations and an additional one for the jump of the
momentum density.

Multicomponent systems. – Multiphase systems of
practical importance usually involve many components.
Here we generalize the above arguments to multicompo-
nent systems. For a n-component system, the state of a
bulk phase can be characterized by the n+1 intensive
variables µ1, . . . , µn, and T , where µj is the chemical
potential of the component j, and the corresponding mass
density will be denoted by ρj . All information about the
bulk equations of state is contained in the thermodynamic
potential p(T, µ1, . . . , µn). According to the Gibbs phase
rule, for two-phase coexistence we loose one degree of
freedom. We choose to characterize the thermodynamic
state of an interface in a n-component system by the
intensive variables µs1, . . . , µ

s
n−1, and T

s. The condi-
tion for phase coexistence is given by the relationship
µsn(T

s, µs1, . . . , µ
s
n−1) and all the constitutive information

is contained in the interfacial tension γ(T s, µs1, . . . , µ
s
n−1).

The role of the pressure-like quantity γ, given as a func-
tion of intensive variables, as a thermodynamic potential
for interfaces is natural because interfaces are controlled
by the surrounding bulk phases, thus acting as baths for
the state of the interface.
Instead of characterizing the interface by falling back on

the Euler and Gibbs-Duhem equations for nonequilibrium
multicomponent interfaces, us = T s ss+ γ+

∑n
j=1 µ

s
j ρ
s
j

and 0= ss dT s+dγ+
∑n
j=1 ρ

s
j dµ

s
j , we emphasize the

interplay of gauge-invariant and -variant information in
the same way as in eqs. (5), (6) by writing

ss− ∆s
∆ρn

ρsn =−
∂γ

∂T s

∣∣∣∣
µsk !=n

, (7a)

us− ∆u
∆ρn

ρsn = γ−T s
∂γ

∂T s

∣∣∣∣
µsk !=n

, (7b)

ρsj −
∆ρj
∆ρn

ρsn =−
∂γ

∂µsj

∣∣∣∣
T s,µsk !=j,n

, (7c)

for j = 1, . . . , n− 1, where the gauge is now characterized
by the value of the excess mass density ρsn. The convenient
reference gauge, for which the expressions for all other
excess densities in eqs. (7) are particularly simple, is given
by ρsn = 0. Note that this choice may in some instance
appear inappropriate, as it can lead to negative values for
the surface excess density of other components. Choosing
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another reference gauge can circumvent such problems (see
sect. 4.2.3 of ref. [19]). To obtain the jump ratios occurring
in eqs. (7), we can generalize the Clapeyron equations (2)
as follows:

∆s

∆ρn
=−∂µ

s
n

∂T s

∣∣∣∣
µsk !=n

, (8a)

∆u

∆ρn
= µsn−T s

∂µsn
∂T s

∣∣∣∣
µsk !=n

, (8b)

∆ρj
∆ρn

=−∂µ
s
n

∂µsj

∣∣∣∣
T s,µsk !=j,n

, (8c)

for j = 1, . . . , n− 1. As Gibbs already noticed [3], in multi-
component systems, one may introduce gauge-invariant
adsorptions Γjk of component j relative to component k
defined by mj Γjk = ρsj − ρsk(∆ρj/∆ρk), where mj is the
mass of the particles of component j. The adsorptions
relative to component n are given in eq. (7c).

Implications. – The proposed local equilibrium
approach to describe interfaces in dynamic multiphase
systems requires some typical practical procedures
and implies a number of predictions which can be
tested. In the thermodynamic characterization of
interfaces of n-component systems, the two functions
µsn(T

s, µs1, . . . , µ
s
n−1) and γ(T s, µs1, . . . , µ

s
n−1) contain

all the gauge-invariant thermodynamic information.
Note that µsn = µ

s
n(T

s, µs1, . . . , µ
s
n−1) is the condition for

phase coexistence and does not contain any information
about the structure of the interface. The gauge-invariant
characterization of the interface structure is contained
entirely in the pressure-like thermodynamic potential
γ(T s, µs1, . . . , µ

s
n−1) [24]. In experiments, the deter-

mination of the function µsn(T
s, µs1, . . . , µ

s
n−1) is a

major challenge, but it can rely on decades of expe-
rience with the CALPHAD (CALculation of PHAse
Diagrams) method [29]. A number of experimental
techniques for measuring the equilibrium interfacial
tension γ(T s, µs1, . . . , µ

s
n−1) exist. In Monte Carlo and

molecular dynamics simulations [30,31], the calculation of
chemical potentials can be based on the particle insertion
method [32] in either of the bulk phases. The key equation
of interfacial statistical mechanics provides the interfacial
tension in the form of the anisotropic part of the stress
tensor [14], γ =− 1

4A

∑
i,j

(
fij · rij − 3n · fijrij ·n

)
, where

rij gives the position of particle j with respect to the
position of particle i, fij is the force exerted by particle i
on particle j, n is a unit normal vector on the interface,
and A is the area of the interface.
Once the functional forms of µsn and γ are available, one

needs to be able to identify the values of T s, µs1, . . . , µ
s
n−1

characterizing the state of an evolving interface at any
time. For a single-component system, the local equilibrium
interfacial tension γ(T s) can actually serve as a conve-
nient thermometer to find T s when calibrated with the
equilibrium results for γ(T ). For multicomponent systems,
the relationship between the excess densities needs to be

considered in addition. An unambiguous way of evaluating
the chemical potentials is based on the invariant adsorp-
tions Γjn(T s, µs1, . . . , µ

s
n−1) relative to the n-th compo-

nent [2], most conveniently calculated in the gauge ρsn = 0.
After clarifying how the local equilibrium description

of an interface can be handled and how the values of T s,
µs1, . . . , µ

s
n−1 characterizing an evolving interface can be

found, we can look at the observable predictions of assum-
ing local equilibrium. The most impressive prediction is
that the jump ratios in a nonequilibrium environment
must be the same as in the corresponding equilibrium
state of the interface. These jump ratios are actually
given in eqs. (8). A test of the jump ratio relationships
corresponds to a test of gauge invariance. We can further
test the expressions for the excess densities in eqs. (7) in a
particular gauge, most conveniently ρsn = 0. Note that only
eqs. (7a) and (7b) have predictive power because eq. (7c)
has already been used to identify the values of the chemi-
cal potentials characterizing the state of the interface. In a
computer simulation, the excess energy density is directly
available so that eq. (7b) is tested most conveniently.

Conclusions. – The local equilibrium assumption for
interfaces is an important ingredient to a transport theory
of multiphase systems. Many aspects and implications of
the implementation of local equilibrium for interfaces have
been elaborated in the literature. In the present paper, we
have strengthened the foundations of the local equilibrium
assumption by using the principle of gauge invariance. The
gauge transformations appearing naturally in a macro-
scopic theory of interfaces are the microscopic displace-
ments of the interface, which change the excess densities
in the interface but should not affect any thermodynamic
properties. Gauge invariance suggests that the jumps of
bulk densities across an interface are central to under-
standing local equilibrium of the interface.
We have compiled a number of consequences of the local

equilibrium assumption which can be used to test its valid-
ity. Such tests are important because local equilibrium for
interfaces is far from obvious for dynamic nonequilibrium
systems. Particularly alarming is the existence of noninte-
grable long-time tails in the velocity autocorrelation func-
tion for two-dimensional flows so that the regularization
provided by the bulk environment is essential for avoid-
ing singular interfacial transport properties (the interface
would then be a so-called “quasi–two-dimensional” fluid;
see ref. [33] and references therein). Using the property
of local equilibrium for the interface between two bulk
phases, we have seen that, in a single-component system,
the knowledge of the interfacial tension and of the chemical
potential as functions of the temperature gives a complete
description of the thermodynamic properties of the inter-
face in equilibrium as well as away from equilibrium.
We have also given the generalization to multicomponent
systems. Whereas the complete thermodynamic informa-
tion about a bulk phase of a n-component system is
contained in a single thermodynamic potential depending
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on n+1 variables, the complete gauge-invariant thermo-
dynamic information about an interface is contained in
two functions of n variables. The transparent combination
of gauge-variant and -invariant thermodynamic informa-
tion is given in eqs. (7), (8).
It lies in the nature of interfaces that they cannot be

studied as isolated objects, so that experimental investi-
gations of interfaces are difficult. Even the conceptually
clear identification of purely interfacial properties is diffi-
cult. As interfacial properties are often measured under
nonequilibrium conditions, the local equilibrium assump-
tion can be extremely useful to extract valid equilibrium
properties and to separate static and dynamic material
properties in a meaningful way. For instance, according to
the present results, there is no need to invoke a concept
like a dynamic surface tension, different from the equilib-
rium one [34,35]. An apparent dynamic interface tension
arises merely because the state variables of the interface
depend on time.
One objective of this paper has been to show which set

of experimental data is sufficient for a complete thermo-
dynamic description of an interface both in equilibrium
and in nonequilibrium situations. We also expect that our
observations will be useful for studying transport phenom-
ena into and through membranes [23]. Indeed, nonequi-
librium interfacial thermodynamics will help to construct
proper boundary conditions for such transport problems.
It is important to realize that at no instance in our

arguments, the temperature or the chemical potentials of
the interface are considered to be equal to either of the
values in the adjacent phases when the system is not in
equilibrium. Neither are the temperature and chemical
potentials left and right of the interface equal to each
other in nonequilibrium systems. The assumption that
these properties are continuous through a nonequilibrium
interface is very common. However, this paradigm is
fundamentally incorrect.

∗ ∗ ∗

Support provided by the European Commission through
the MODIFY (FP7-NMP-2008-SMALL-2, Code 228320)
research project is gratefully acknowledged.

REFERENCES

[1] Johannessen E. and Bedeaux D., Physica A, 330
(2003) 354.

[2] Glavatskiy K. S. and Bedeaux D., Phys. Rev. E, 79
(2009) 031608.

[3] Gibbs J. W., The Scientific Papers of J. W. Gibbs
(Dover, New York) 1961.

[4] Bedeaux D., Albano A. M. andMazur P., Physica A,
82 (1975) 438.

[5] Bedeaux D., Nonequilibrium Thermodynamics and
Statistical Physics of Surfaces, in Adv. Chem. Phys.,
Vol. 64 (Wiley, Hoboken) 1986, pp. 47–109.

[6] Albano A. M. and Bedeaux D., Physica A, 147 (1987)
407.

[7] Guggenheim E. A., Thermodynamics: An Advanced
Treatment for Chemists and Physicists, 7th edition
(North-Holland, Amsterdam) 1985.
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