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’ INTRODUCTION

The ideal polymeric material that could satisfy the demands of
a range of technological applications would be both strong and
tough.1�3 Creating materials that integrate both these desirable
mechanical properties remains a significant challenge. Polymers
with a high strength or high modulus are usually stiff and, thus,
lack the ductility that would contribute to the toughness of the
material. On the other hand, toughmaterials commonly have low
moduli. A strategy that might be useful in addressing this
challenge is to take components that individually exhibit one of
the desirable attributes and integrate these components in a
manner that produces the desired collective properties. An ideal
structural unit that would contribute toughness is a material that
possesses a folded secondary structure, such as that found in
various proteins (e.g., titin4,5 or fibronectin6,7) or synthetic
foldamers.8 As the coiled chains or globules were stretched, they
would unfold and this unfolding would dissipate energy, which in
turn would contribute to toughness. A facile unfolding, however,
could diminish the strength of the material. A component that
contributes to high strength is strong bonds, but the introduction
of strong bonds between the sheets of the folded chain would
inhibit the unfolding and thus be detrimental. If, however, one
were to cross-link the globules into an extended network and

harness stronger bonds as the intermolecular or interglobular
linkages, onemight create a material that yields the optimal traits.

Using computational modeling, we implement the above de-
sign strategy; namely, we create a material that is composed of
coiled chains that are cross-linked into an extended network. (The
specific nature of the cross-links is detailed in the Methodology.)
Notably, a number of experimental studies have focused on
similar attempts.9 For example, Guan et al.10,11 introduced
reversibly unfolding cross-linkers between polymer chains to
enhance the properties of the networks. Additionally, Guan
et al.12,13 synthesized a linear polymer that encompassed an array
of globular units, which mimicked the architecture of titin. In
these various systems, the intramolecular bonds (i.e., those within
the folded structures) were weak, labile bonds. The intermole-
cular bonds, on the other hand, were taken to be covalent bonds.

An advantage of utilizing computational modeling in deter-
mining effective bonding strategies for creating these cross-
linked materials is that we can readily tailor both the inter- and
intramolecular interactions. Furthermore, we can determine how
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ABSTRACT: Using computational modeling, we investigate
the mechanical properties of polymeric materials composed of
coiled chains, or “globules”, which encompass a folded second-
ary structure and are cross-linked by labile bonds to form a
macroscopic network. In the presence of an applied force, the
globules can unfold into linear chains and thereby dissipate
energy as the network is deformed; the latter attribute can
contribute to the toughness of the material. Our goal is to determine how to tailor the labile intra- and intermolecular bonds within
the network to produce material exhibiting both toughness and strength. Herein, we use the lattice spring model (LSM) to simulate
the globules and the cross-linked network. We also utilize our modified Hierarchical Bell model (MHBM) to simulate the rupture
and reforming ofN parallel bonds. By applying a tensile deformation, we demonstrate that the mechanical properties of the system
are sensitive to the values ofNin andNout, the respective values ofN for the intra- and intermolecular bonds.We find that the strength
of the material is mainly controlled by the value ofNout, with the higher value ofNout providing a stronger material. We also find that,
ifNin is smaller thanNout, the globules can unfold under the tensile load before the sample fractures and, in this manner, can increase
the ductility of the sample. Our results provide effective strategies for exploiting relatively weak, labile interactions (e.g., hydrogen
bonding or the thiol/disulfide exchange reaction) in both the intra- and intermolecular bonds to tailor the macroscopic performance
of the materials.
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each of these interactions contributes to the mechanical proper-
ties and, thus, establish useful predictions concerning optimal
features of the bonding interactions in the system. It is note-
worthy that molecular dynamics14,15 and cross-linked network
models16 have been used to investigate the network’s mechanical
behavior, as well as gelation and phase separation processes.17�19

In previous computational studies of cross-linked nanogels,20,21

we found that labile intermolecular bonds allowed the system to
undergo a reshuffling in response to mechanical deformation and
thereby prevented catastrophic failure. These studies revealed
the utility of harnessing weak interactions (e.g., hydrogen bond-
ing or the thiol/disulfide exchange reaction) to cross-link the
elemental units into an extended network. Thus, in these studies,
we introduce weak or labile bonds between both the intra- and
intermolecular associations. Mindful, however, of the hypothesis
articulated in the first paragraph, we tailor the strength of these
labile bonds and investigate the relative benefits of harnessing the
relatively weaker or stronger bonds as the intra- or intermolecular
linkages.

We take as our basic structural unit a folded chain that includes
two hairpin turn and thus encompasses the simplest β sheet
motif (see Figure 1). Conceptually, this simple folded structure
mimics a globular protein or a single-strand foldamer ribbon,8

where hydrogen bonds form the intramolecular junctions be-
tween the sheets. The surface of our globular chain is decorated
with ligands, which subtend reactive groups that are responsible
for the formation of inter- and intramolecular linkages. As we
discuss in the Methodology section, we implement our modified
Hierarchical Bell model (MHBM)21 to model the breaking and
remaking of these cross-links. In our MHBM, a cross-link can
represent N parallel, reformable bonds; in this way, we model a
ligand on our globules encompassing N reactive sites, and thus,
the interaction between two ligands can lead toN parallel bonds.
By varyingN, we can alter the effective strength of the linkage; for

example, by changingN = 1 toN = q, we change the linkage from
a single hydrogen bond to a cluster of q parallel hydrogen bonds.
It is worth emphasizing that the bonds in our model are
reformable: if a bond is broken in particular time step, it can
reform at a later time. The remaking of broken bonds can readily
occur with reactive functional groups and particularly if the time
scale for the deformation is slower than the rate of bond
formation, which is the limit we consider here.

As we show below, the performance of our cross-linked
material is strongly dependent on the location of the relatively
weak and strong bonds. Furthermore, we isolate a parameter
range that yields a material that displays both high strength and
toughness. It is important to note that our globules are all
oriented in the same direction and, in particular, are oriented
along the direction of the applied force. This represents an
idealized scenario, but nonetheless is especially instructive since
it reveals the optimal behavior that can be achieved by exploiting
the unfolding of the coiled chains in response to mechanical
deformation and, hence, the effective improvement of the
mechanical properties of the material.

’METHODOLOGY

As noted in the Introduction, we focus on the structural
rearrangements within materials formed from cross-linked
“globules” as the sample is subjected to mechanical deforma-
tion. The deformation can lead to the rupture and reforming
of bonds both within a globule and between different globules.
To capture the dynamic behavior of this system, we must
adopt a sufficiently coarse-grained approach that we can
model not only the individual coiled chains, but also the
extensive, dynamically evolving network formed by these
interacting macromolecules. To this end, we use the lattice
spring model (LSM)20�24 to construct our network and

Figure 1. (a) Schematic of an elementary globular unit in the unfolded state. (b) The same globular unit in a folded conformation. The chain consists of
seven nodes shown as beads and of permanent bonds shown as green lines. (c) Illustration of a cross-linked globule network. The chains are cross-linked
with the inner linkages (blue lines) and the outer linkages (red lines). Each linkage can consist of a number of parallel bonds.
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simulate the micromechanical behavior of the sample, as we
discuss below.

In the LSM, point-like masses (nodes) are interconnected by
Hookean springs, which represent bonds. Within our system,
there are three types of bonds. The permanent bonds along
the backbone of a macromolecule (drawn in green in Figure.1)
do not break. On the other hand, both the intramolecular and
intermolecular bonds are labile and, hence, can break and readily
reform.

Figure 1a,b show the seven node model that represents an
individual macromolecule. (All these green nodes are assumed to
be chemically identical.) Within this macromolecule, the nodes
interact through the potential U(r), which involves both an
attractive Hookean spring term and a repulsion term that mimics
the excluded volume around each node

UðrÞ ¼
k
2

r2 þ a
r

� �
r e rc

const r > rc

8><
>: ð1Þ

Here, k is the spring stiffness constant, r is the distance between
the nodes, and a is the repulsion parameter.20,21 The equilibrium
length of a single bond is equal to d = (a/2)1/3, which
corresponds to the minimum of U(r) in eq 1. For the intramo-
lecular links that can break and reform (blue lines in Figure 1b),
the potentialU(r) is taken to be as a constant at r > rc, so that the
bonding interaction is cut off at rc. The cutoff distance is set to
rc = 2d t (4a)1/3.

The same interaction potential is used in the case of the
reversible intermolecular bonds. If a reversible bond (intra- or
intermolecular) is broken, then the interaction potential between
the two interacting nodes is given solely by U(r) at r < d. For all
the reversible bonds, the spring constant k is taken to be six times
weaker than that for the permanent (green) bonds. (While
different values for the latter spring constants could be chosen,
we note that for the large number of nodes considered here (in
excess of 1000 for large samples), significant difference between
the breakable and permanent spring constants can give rise to
numerical instabilities.) We neglect thermal fluctuations in the
nodal positions; the effect of temperature is, however, taken into
account in the probabilities for the bonds to rupture and reform,
as given by eqs 2 and 3 below.

We focus on the overall mechanical stability of the material
and do not probe the details of the (fast) fracture process that
occurs at high stresses. In particular, we take the dynamic
behavior of our system to be in the overdamped limit, where
we neglect the inertial terms in our equations of motion for the
nodes. Thus, the velocity of a node is taken to be proportional to
the net force acting on the node (where the net force is the sum of
forces from neighboring nodes and from an external tensile
force). The latter assumption is commonly made in studies of gel
dynamics.25,26 Specifically, each gel node obeys the following
dynamical equation: dri/dt =μFi, where μ is themobility and Fi is
the force acting on node i. Here, we take μ to be a constant and,
thus, neglect the dependence of the mobility on the polymer
density. The force acting on the node i is defined as follows: Fi =
�∂Utot/∂ri + Fi

ext, where the elastic energy Utot is equal to Utot =
(1/2)∑m,nU(|rm � rn|), where the summation is made at a given
bond configuration at a particular moment of time, and m 6¼ n.
The force Fi

ext is the external force that is permanently applied to
the nodes initially residing at the vertical edges of a rectangular

sample. We numerically integrate the equations of motion using
the fourth-order Runge�Kutta algorithm.

The applied force can drive the labile bonds to rupture and
reconnect. We adopt a variation of the Bell model27 to describe
the dynamics of this bond breaking and remaking. The Bell
model serves as a useful framework for describing the relation-
ship between bond dissociation and stress27 and has been widely
used to describe the reversible bonds formed in proteins,28 and
between biological cells and surfaces.29�31 In the Bell model, the
rupture rate, kr, is an exponential function of the force applied to
the bond

kr ¼ k0r exp
r0F
kBT

� �
ð2Þ

The term k0r = v exp[�U0/(kBT)] is the reactivity of an
unstressed bond and F is the absolute value (i.e., the norm) of
the force due to a bond between two nodes, which is obtained by
differentiating the potential in eq 1. In the latter equation for k0r,
U0 is the potential well depth at zero mechanical stress, and ν is
an intrinsic frequency of an unstressed bond. In eq 2, the
parameter r0 characterizes the change in the reactivity of the
bond under stress, kB is the Boltzmann constant, and T is the
temperature.

The reforming rate, kf, for a single broken bond is calculated
directly from the detailed balance principle,29,31 and is given by

kf
kr

¼ k0f
k0r

exp
ΔUðrÞ
kBT

� �
ð3Þ

where ΔU is the difference in the potential energies of a
connected and broken bond. At small distances, r e d, the
energy difference is ΔU(r) = 0, whereas at d e r e rc, ΔU(r) =
U(r). At distances larger than rc, the bonds are ruptured. By
combining eqs 2 and 3, we obtain for d e r e rc

kf ¼ k0f exp
r0F�ΔUðrÞ

kBT

� �
≈ k0f exp

r0F � k1ðr� dÞ2=2
kBT

 !

ð4Þ
where the bond potential, eq 1, is approximated by the quadratic
function in the vicinity of the equilibrium bond length d and k1 =
d2U(r)/dr2|r=d = 3k. We use this approximated value of kf in
eq 5 below to update the state of the bonds at every time step.
In particular, the probability for a connected bond to break and
the probability for a broken bond to reform within a simulation
time step Δt were taken to be of the following form

wr ¼ 1� exp½ � krΔt�
wf ¼ 1� exp½ � kfΔt� ð5Þ

In the Hierarchical Bell model (HBM),32�35 two interacting
sites on a chain can be interconnected by n parallel bonds.
Through the use of theHBM, we can capture the fact that a single
node in our coarse-grained model can encompass n > 1 reactive
sites and can thus contribute multiple binding interactions. Thus,
the internode springs now represent bonds that lie in parallel. In
this case, the total force applied to a single bond is equal to F =
Ftot/n.

Although the HBM is useful for modeling such multiply
interconnected segments, the previous formalism32�35 did not
include the possibility of bond reformation. Once a bond was
broken, it could not be reconnected. Though this approximation
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is appropriate in situations where the material experiences very
rapid deformations, it might not be valid in cases where the
sample is undergoing a slower stretching or pulling. Further-
more, for chains that are decorated with labile bonds (involving,
for example, hydrogen, thiol, or disulfide groups), the reforma-
tion of broken bonds can readily occur.

We recently modified the HBM21 to take into account the
reformation of bonds that lie in parallel. We note that researchers
have developedmodels that take into account the reformation of a
single Bell bond;31,36�39 in our model, that would correspond to
the N = 1 limit. What is distinctive about our modified HBM
(MHBM) is that we consider reformable linkages that encompass
N parallel bonds. As noted in the Introduction, through this
model, we can capture the fact that the ligands on the globules can
subtend multiple reactive groups, and thus, each ligand�ligand
interaction can lead to multiple parallel bonds. Specifically, in our
model, the state of each breakable interconnection between two
nodes at a given time is characterized by the number of connected
reactive bonds, n, with the maximum number being equal to N.

In ourMHBM approach,21 the probability for a single stressed
bond to break and reform is described by eqs 2�5. Given that n
bonds are initially connected, the probability of rupturing m
bonds within a time step Δt is equal to

prðm, nÞ ¼ Cn
mw

m
r ð1� wrÞn � m ð6Þ

whereCm
n is the binomial coefficient that accounts for the number

of ways that m bonds that break can be chosen from a set of n
initially connected bonds, and wr is defined by eq 5 at an applied
force equal to F. Similarly, the probability ofm0 bonds forming (if
n0 = N � n bonds are initially ruptured) is equal to

pf ðm0, n0Þ ¼ Cn0
m0wm0

f ð1� wf Þn
0 � m0 ð7Þ

The rupture and formation of bonds in a given time step are
considered statistically independent processes. Consequently,
the total probability W(n1, n) for a link to have n1 connected
bonds at the subsequent time step is computed as a sum over all
possibilities of the rupture and formation processes

Wðn1, nÞ ¼ ∑
m

prðn� n1 þ m, nÞpf ðm,N � nÞ ð8Þ

The probabilities pr and pf in eq 8 are set equal to zero if the first
argument is negative or is greater than the second argument; in
other words, both the probability to break more bonds than were
initially connected and the probability to connect more bonds
than were initially ruptured are strictly equal to zero. In the
simulations, we use eqs 2�8 to update the system of bonds at
each time step Δt.

At the onset of the simulations, the macromolecules are folded
in the manner shown in Figure 1b; these globules represent the
elementary units in our model. To reiterate, an intramolecular
link is formed solely between the red node and a green node of
the samemolecule (see Figure 1a and b). Such links are shown as
blue lines in Figure 1b, where each link (blue line) can encompass
multiple parallel labile bonds. The maximum number of bonds
allowed in such a link is given by N = Nin. An intermolecular link
can be formed between a pair of green nodes on different units
(globules) and can encompass up to N = Nout parallel labile
bonds, or between a red node and a green node on different units
and can then encompass up to N = Nin parallel labile bonds. In
the simulations, we vary the values of the maximum number of
parallel bonds of both types in the range 1 e N e 2.

The elementary units (globules) in a nondeformed sample
were arranged in the following manner: 5 rows, with 10 units in
each row, 8 rows with 12 units in each row, and 12 rows with 15
units in each row. For each of these configurations, we examined
8 independent samples. The layers were constructed with a
lattice spacing of 3d between the centers of the units, where d is
the equilibrium distance between the nodes. (The initial hor-
izontal size of the unit is 2d.) The vertical spacing between the
layers was set equal to 1.3d. At this step, all possible bonds within
the cutoff radius were established andmarked as breakable bonds
with Nin = Nout = 1. The sample was then equilibrated for 400
units of time (at this stage, we do not allow the nodes to move).
During the equilibration, the most stressed bonds were ruptured
in accordance with the probability in eq 2. In the second step, we
allow the nodes to move, specify the values of Nin and Nout, and
equilibrate the sample for an additional 400 units of time. We
then apply a tensile stress to the material.

We set the potential well depth equal to U0 = 20kBT for
breakable bonds.28,31 We also assign the equilibrium distance d
equal to 20 nm, so that the total length of the unfolded molecule
is equal to 120 nm. We set our unit of time T0 equal to the
relaxation time in a sparsely cross-linked PDMS40,41 (ofmolecular
weight ∼5 � 104g/mol) gel, giving a value of T0 ≈ 10�5 s. The
spring constant of a permanent bond is taken to be equal 4 �
10�4 N/m, which corresponds to a sparsely cross-linked PDMS
gel40,41 with a shear modulus of 2.5 kPa at room temperature. The
mobility of the nodes in the equation ofmotionwas approximated
as μ = 1/(T0k). The parameter r0, which describes the change in
the reactivity of a stressed bond, was chosen so that the maximum
decrease in the energy barrier (the exponent in eq 2) as a result of
the tensile load equals 2kBT.

28 The time step in the integration
was chosen to be Δt = 2 � 10�2T0.

’RESULTS AND DISCUSSION

Each globule in the network acts as a unit of stored length;
once a tensile load is applied, the globules unfold into linear
chains. This responsive behavior provides the material with
enhanced ductility and, as we show below, a distinctive mech-
anism for delaying the catastrophic failure of the sample. Thus,
the proposed design rules could facilitate the synthesis of
novel adaptive and sustainable materials. The range of para-
meters that can be modified to optimize the properties of such
materials is relatively large. Herein, we focus on investigating
the role of reformable, parallel bonds on the mechanical
properties (strength and toughness) of these networks. In
particular, we examine how differences in the maximum num-
ber of parallel bonds N for the intramolecular (Nin) and the
intermolecular (Nout) linkages affects the response of the
samples to mechanical deformation. To this end, we examine
the material’s behavior under a tensile deformation that is
applied at a constant strain rate or at a constant stress. In both
cases, we vary the values of Nin and Nout in the range 1eNe 2.
These examples serve to illustrate the differences in the perfor-
mance of the material that can be achieved by tailoring the cross-
links within the system and, more specifically, controlling
the location of the relatively weak (N = 1) and strong
(N = 2) bonding interactions.
A. Constant Strain Rate Test on a Small Sample.We utilized

the constant strain rate test to quantify the total strain in a sample
until it fractures into two pieces. We initially considered small
samples composed of 5 rows of units with 10 units in each row, as
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shown in Figure 2. The samplewas stretched at a constant velocity
and the tensile stress was computed as a function of the strain ε =
(L� L0)/L0. Specifically, the rightmost nodes of the sample were
held fixed in the direction of applied load, while the leftmost edges
were displaced along the horizontal axis with a speedV; the nodes
are allowed to move freely in the vertical direction. The specific
pulling velocity was chosen equal to V = 1.64� 10�3 d/T0, which
is equivalent to V = 3.3 � 10�4 cm/s for representative experi-
mental parameters (see the Methodology section). We note that
such constant strain rate measurements are widely used in the
characterization of cross-linked polymers.41,42

At the regions of high strain, where plastic deformation takes
place, the true stress is higher than the calculated engineering
stress due to the decrease of the sample’s cross section in the
course of deformation. Thus, these calculations give an estimate
from below for the stability region of the material.
Figure 2 shows snapshots at various times for samples atNin =

1 andNout = 2. Here, a green line designates a permanent bond. A
red line marks a link between two green nodes (see Figure 1)
with a maximum ofNout = 2 bonds, and a blue line indicates a link
between either a red node and another node (green or red) with a
maximum of Nin = 1 bonds. As can be seen, the macromolecules
unfold in the course of the deformation (Figure 2b). Before the
sample fractures into two, the backbones of the macromolecules
are essentially aligned parallel to the applied deformation
(Figure 2c and d).

To characterize the unfolding process, we calculate the
instantaneous radius of gyration of the globular units in the
sample

R2
g ¼ 1

Nnode
∑
Nnode

i¼1
ðjrim � rc

mjÞ2 ð9Þ

Here, Nnode = 7 is the number of nodes in a macromolecule, ri is
the radius vector of the node i, and rc

m = (1/Nnode)∑i = 1
Nnoderi

m is
the radius vector of the geometrical center ofmth unit. Note that
unstressed, folded units (Figure 1b) have a radius of gyration
equal to Rg = (6/7)1/2d, while unstressed, completely unfolded
(linear) macromolecules have a radius of gyration Rg = 2d.
Figure 3 shows the evolution of the distribution of Rg in the
small samples in the course of deformation. The plots in
Figure 3a�d are computed for the respective samples in
Figure 2a�d. Figure 3a indicates the distribution for an initial
sample (Figure 2a), where all the units have a radius of gyration
close to the unperturbed value of (6/7)1/2d. As the units unfold
in the course of deformation, the characteristic Rg increases
(Figure 3b,c). At the moment of time when the sample breaks,
most of the units have unfolded; the respectiveRg values are close
to the maximum value of 2d (Figure 3d).
Figure 4 reveals the time evolution of the mean radius of

gyration; due to the unfolding of the units, ÆRgæ increases
monotonically up to t ≈ 8 � 104 T0, which corresponds to the

Figure 2. Snapshots of a small sample for Nin = 1 and Nout = 2 at different moments of time: (a) t/T0 = 4.00� 102; (b) t/T0 = 2.74� 104; (c) t/T0 =
8.98 � 104; (d) t/T0 = 1.11 � 105.
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initiation of the fracture process. After the sample has broken into
two, the stretched macromolecules relax and the ÆRgæ reaches an
equilibrated, constant value. (It is worth noting that the data in
Figure 4 is sampled every 6000T0, which is longer than the
relaxation time; thus, we do not resolve the fast relaxation of the
sample after it breaks.)
To further characterize the material’s mechanical properties

and determinemeans of optimizing the response of the sample to
the mechanical deformation, we calculate the stress�strain
curves shown in Figure 5, where we altered the values of Nin

and Nout in the range 1e Ne 2. The engineering stress for the
two-dimensional sample is normalized by the spring constant, k,
of the intramolecular bonds at Nin = 1. The two-dimensional
stress σ = Finst/A0 was computed as a ratio of the instantaneous
force Finst acting on the nodes at the left edge of the sample and
the initial vertical width of the sample A0. As is evident from
Figure 5, the stress monotonically increases at small strains of ε <
0.1. Oscillations of the stress�strain curves at higher strains are
caused by the breaking and subsequent remaking of the bonds in

the course of deformation. The sharp drop of the stress to zero is
attributed to the catastrophic failure of the samples. We define
the strain at break, εb, of the sample as the strain at which this
drop occurs. It is evident from Figure 5 that the sample atNin = 1
andNout = 2 exhibits the best ductility, producing a value of εb≈
1.70. On the other hand, the sample atNin = 2 andNout = 1 is the
least stable and ruptures at εb ≈ 0.3. Namely, an almost 6-fold
increase in the εb for sample can be achieved by varying the
location of the N = 2 linkages from the intramolecular to the
intermolecular associations.
To more completely quantify the behavior of this material

under tensile deformation, we apply the Weibull statistical
analysis. For these studies, we conducted eight runs for each
set of parameters (at a given Nin and Nout) and used Weibull
statistics to calculate the strain at break in the small sample. In
this analysis, we assume that the probability, pb, for a sample to
break at a certain strain, ε, has the following functional form

pb ¼ 1� exp½ � ðε=εbÞm� ð10Þ
where εb is the mean breaking strain. To evaluate the left-hand
side of eq 10, we determined the strain to break for eight samples
(Ntest = 8) and arranged these values in ascending order so that
the sample j = 1 breaks first and sample j = 8 designates the
sample that fractures last. Then, the Bernard and Bos-Levenbach
approximation43 was used to obtain pb as follows

pbðε ¼ εjbÞ ¼ j� 0:3
Ntest þ 0:4

ð11Þ

where εb
j is the breaking strain for the jth sample. By fitting the

function in eq 10 to our results (using a least-squares method),
we calculate the fitting parameters εb andm. The plot in Figure 6
demonstrates the dependence of the probability for a sample to
rupture, pb, at strain to break, εb, for a sample atNin = 1,Nout = 2;
each blue point represents the strain to break of an independent
simulation. The red curve shows the result of fitting the data to
eq 10 for eight independent runs.
Table 1 summarizes the results of the Weibull analysis for the

strain at break and for the radius of gyration computed for small
samples at the four combinations of Nin and Nout considered
here. The strain at break is highest for the samples with Nin = 1
and Nout = 2, and hence, these samples exhibit the highest
ductility. The strain at break is the lowest for the samples with
Nin = 2 and Nout = 1, indicating that these are the most brittle
materials. As noted above, the εb is roughly five times greater for
the ductile material than the brittle ones. These results demon-
strate the significant improvements in mechanical properties that

Figure 4. Time evolution of the mean radius of gyration of a small
sample at Nin = 1 and Nout = 2 computed for the simulations shown in
Figure 2.

Figure 5. Stress�strain curves calculated for the small sample at Nin =
1,2 and Nout = 1,2. The stress σ is normalized to the bond stiffness k.

Figure 3. Distributions of the radii of gyration for globules in a small
sample for Nin = 1 and Nout = 2 under constant tensile strain rate at
different moments of time. The histograms (a�d) correspond to the
respective frames (a�d) in Figure 2.
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can be attained through small, judicious changes in the relative
values of Nin and Nout.
Interestingly, the samples with Nin = Nout display an inter-

mediate ductility, with a strain to break that lies roughly midway
between those obtained for Nin = 2 and Nout = 1 and for Nin = 1
and Nout = 2. It is worth noting that the strain at break for the
samples with Nin = Nout = 1 and that for Nin = Nout = 2 are equal
to each other within the estimated error.
To establish the extent of unfolding in each case, we used the

sameWeibull statistical analysis for calculating themean radius of
gyration, Rg,b, immediately after fracture of the sample (see
Table 1). It is evident that the larger the strain at break, εb, the
larger the mean radius of gyration, Rg,b. In other words, there is
direct correspondence between the ductility of the material and
extent to which the units unfold in the course of the tensile
deformation.
B. Constant Tensile Stress Test for the Smaller Sample.To

obtain another measure of the mechanical properties of the
material, we applied a tensile force (along the X axis) at the edges
of a small sample. (In this test, the force was applied to the edge
nodes of the rightmost and leftmost units in the opposite
directions.) The forcewas applied gradually, as shown in Figure 7,
to prevent the premature failure of the sample at the edges. In
Figure 7, the stress σ is normalized by σ*b, which is the mean
stress to break for the sample at Nin = Nout = 1 (see further
below). In the simulations, the tensile stress test was applied
for a total time of t = 1.2 � 104T0 and the sample was held
under a constant force (or engineering stress) for a period of time
t = 8 � 103T0.
To calculate the stress at break for the small sample, we again

use the Weibull statistical analyses (see eq 10). Now, however,
the fitting parameters are the characteristic stress at which the

sample fractures onto two pieces, σb, and the exponent m
(which characterizes the brittleness of the sample). We again
performed eight independent simulations for each set of
parameters.
The results of the analysis are summarized in Table 2. (We

normalize the stress at break to the mean value σb* calculated
for the sample at Nin = Nout = 1.) It is evident from the table
that, within the estimated error, the stress at break values
are equal for both materials with Nout = 2. Specifically, σb/σb*
= 1.96( 0.15 for the samples with Nin = 1 and σb/σb* = 2.01(
0.17 for the samples with Nin = 2. It also follows from Table 2
that the stress at break for the samples with the larger number
of external bonds, Nout = 2, is approximately two times higher
than the stress at break for the samples with Nout = 1. We can
conclude that the strength of this material is controlled by the
value of Nout.
C. Constant Strain Rate Test for the Medium Size and

Large Samples. Finally, we consider the cases of medium and
large samples that encompass 8 rows with 12 particles in each
row and 12 rows with 15 particles in each row. The results of the
analysis of the two larger samples are quantitatively similar, and
thus, we present the data for the largest sample. In these
simulations, we apply a tensile deformation at a constant velocity
(V = 1.64� 10�3 d/T0) similar to the procedure described above
for the small samples, and then use theWeibull statistical analysis
to determine the strain at break of the material. In this section, we
focus on the samples with Nin = 1, Nout = 2, because, as follows
from the above discussion, these samples demonstrate the high-
est toughness and stability.
The graphical output of the simulations forNin = 1 andNout =

2 is shown in Figure 8. (Note that, since we allow the edge nodes
to move freely in the vertical direction, the sample is not
necessarily aligned with the direction of the applied load.) In
contrast to the small sample in Figure 2, it is obvious from
Figure 8 that there is a wide area around the edges of the large

Table 1. Calculated Strain and Mean Radius of Gyration at
Fracture for Small Samples at Nin = 1,2 and Nout = 1,2, from
the Constant Strain Rate Simulations

Nin Nout εb Rg,b/d

1 1 0.80 ( 0.13 1.249 ( 0.065

1 2 1.71 ( 0.06 1.860 ( 0.019

2 1 0.35 ( 0.05 1.019 ( 0.005

2 2 0.99 ( 0.19 1.235 ( 0.069

Figure 7. Time dependence of the stress applied to a small sample in
constant stress tests. The stress σ is normalized to the value σ* obtained
for the small sample at Nin = Nout = 1.

Table 2. Calculated Stress at Fracture for Small Samples at
Nin = 1,2 andNout = 1,2, from the Constant Stress Simulations

Nin Nout σb/σ*b

1 1 1.00 ( 0.16

1 2 1.96 ( 0.15

2 1 1.20 ( 0.10

2 2 2.01 ( 0.17

Figure 6. Probability for the small sample to break, pb, as a function of
strain at break, εb. Blue diamonds show the results of the simulations
conducted at a constant strain rate forNin = 1 andNout = 2. The red line
indicates a least-squares fit between our data and theWeibull probability
distribution function (eq 10).
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sample where the units do not unfold. Evidently, these edge
effects will affect the apparent strain at break calculated as εb

app =
(Lb � L0)/L0 where Lb is the total length of the sample at the
moment when it fractures. To properly take into account the
edge effects and correctly estimate the strain at break, we use the
geometric model shown in Figure 9. In this model, the material
prior to fracture is represented as a dog bone shaped sample.
According to the results of our simulations (Figure 8), we can
estimate that the length of the edge, Le,b, where the units do not
unfold is approximately equal to the width of the sample, H.

According to a simple geometric analysis, the corrected value of
the strain at break is determined as

εb ¼ ðεbapp þ 1� Le, b=L0Þ
1� Le, 0=L0

� 1 ð12Þ

We use eq 12 to estimate the strain at break from the results of
the Weibull statistical analyses of the numerical data for εb

app.
The results of this analysis for the large and medium sized

samples for Nin = 1 and Nout = 2 are presented in Table 3. By
comparing the data in Tables 1 and 3, we see that the results of
the tensile tests for the different-sized samples are in good
agreement with each other. In particular, we see that the strain
at break for the large sample atNin = 1 and Nout = 2 (Figure 8) is
equal to εb = 1.64 ( 0.37.

Figure 8. Snapshots of a large sample at Nin = 1 and Nout = 2 at different moments of time: (a) t/T0 = 4.00 � 102; (b) t/T0 = 4.96 � 104; (c) t/T0 =
7.66 � 104; (d) t/T0 = 9.10 � 104.

Figure 9. Schematic of shape of deformed medium or large samples at
the moment before they fracture. Le,b is the length of part where the
globules do not unfold due to edge effects; Lb andH are the total length
and the width of the sample before the fracture, respectively.

Table 3. Strain to Break Corrected for Boundary Effects for
Nin = 1 and Nout = 2

sample size εb
app εb

medium (8 � 12) 1.51 ( 0.09 1.80 ( 0.11

large (12 � 15) 1.27 ( 0.29 1.64 ( 0.37
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’CONCLUSIONS

We investigated the mechanical properties of a material
created by utilizing reactive bonds to cross-link individual
globular modules, which encompass a secondary structure,
into a macroscopic network. Aside from the permanent bonds
that make up the backbone of the chains, all the links in this
material are labile and a linkage can encompass a maximum of
N = 2 parallel bonds. A distinctive feature of these computa-
tional studies is that all the labile bonds are reformable, i.e., a
bond can break and remake. The latter feature models the
reactive nature of labile links created, for example, through
hydrogen bonding or thiol/disulfide exchange reactions. To
capture the behavior of these parallel, reformable bonds, we
utilized our recently developed modified Hierarchical Bell
model (MHBM), which allowed us to examine the role of
the labile linkages on the response of the material to a tensile
deformation. Additionally, we could focus on the conforma-
tional changes of the globules as the material is stretched and
the labile bonds are reshuffled.

We applied the tensile deformation at a constant force and a
constant strain rate and varied the values of the maximum
number of parallel bonds N for the intramolecular (Nin) and
the intermolecular (Nout) linkages. The tests at constant force
showed that the strength of the material is mainly controlled by
the value of Nout, with the higher value of Nout providing a
stronger material. The tests at constant strain rate revealed that
the ductility of the material depends on the extent to which the
globules can unfold and this, in turn, depends on the relative
value of Nin. Specifically, if Nin is smaller than Nout, the globules
can unfold under the tensile load before the sample fractures and,
in this manner, can increase the ductility of the material. Under
these conditions, one can exploit the globules as units of stored
length, which can improve the toughness of the system. On the
other hand, if Nin is larger than Nout, then the intramolecular
bonds prevent the chains from completely unfolding and the
material is more brittle than in the case with Nin < Nout. In other
words, small variations in the location of the relatively weaker
bonds can lead to significant changes in the mechanical behavior
of the material.

The findings from these studies provide useful guidelines for
integrating different elements to create materials with both high
strength and toughness. As noted above, the units of stored
length provided by the weakly bound coils can improve tough-
ness since they provide an energy dissipating capacity as the
material is deformed. TheNout = 2 cross-links between the coiled
chains provide a strong backbone for the network, and since the
bonds are labile, they also allow the material to undergo some
reshuffling that delays the catastrophic failure of thematerial.20 In
summary, such computational studies provide an effective means
of determining how best to exploit the combination of weak
intramolecular interactions and stronger intermolecular interac-
tions to tailor the macroscopic performance of the materials. In
future studies, we will utilize our approach to design a new
generation of biomimetic, superelastic “glues”, or fibers formed
from cross-linked globules. We will then determine how these
fibers can be harnessed to improve the self-healing behavior of
polymer networks.
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