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The role of a finite exposure times on measuring rheological properties using microrheology techniques is
theoretically investigated. We concentrate on studying fluid models displaying a plateau in the mean-squared
displacementsMSDd of the embedded probe particle. A model is developed to compare the resulting experi-
mentally measured MSD of the particle to its expected value in the fluid model. A plateau MSD is greatly
modified in a measurement whens is greater than the plateau onset time. Moreover, apparent dynamics
drastically differ from the true dynamics at frequenciesv&s−1. These results quantify when and how a finite
exposure time effects the measured MSD of a probe particle which can then alter the extracted rheological
properties and physical interpretations.
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I. INTRODUCTION

Passive microrheology uses thermally fluctuating micron-
sized probes to determine local mechanical properties of a
host mediumf1g. In this class of techniques, time correlation
of the particle position or displacement, through either the
power spectral densitySx

*svd=kux* u2svdl or the mean-squared
displacementkDx2stdl=kfxsu+ td−xsudg2l, is often calculated
f2,3g. Herexstd is the particle position at timet, x*svd is its
Fourier transform at the frequencyv, and the bracketsk¯l
indicate an ensemble average over a particle population
and/or a time average overu. Using a generalized Stokes
expression for the drag applied on the particle by the me-
dium scontinuum assumptiond and the fluctuation-dissipation
theoremsthermal equilibrium assumptiond, these correlations
can then be related to the shear modulus spectrumG*svd of
the material over a large frequency rangef2,4g. This range is
limited in the high frequencies by the fluid and/or the probe
inertial effectss1–10 MHz in usual conditionsd, and in the
low frequencies by the network compressibilitysless than
1 Hzd f2,5,6g. The Brownian motion of a particle embedded
in a complex fluid thus involves time scales from a variety of
dynamical regimes, including the material viscoelastic relax-
ation modes.

Several techniques can be used to measure the particles
position correlationsssee Ref.f7g for a reviewd. Recently, we
outlined a general classification of the errors arising in these
techniquesf8g. On the one hand, the noise in the detection
scheme induces an error independent of the particle dynam-
ics, and thus can be measured with a static particle and cor-
rected on the averaged time correlations. On the other hand,
the sampling method of the particle motions leads to an error
that depends on the particle dynamics, and is challenging to
correct. The latter error is referred to as “dynamic error” in
the following study.

This work focuses on the role of a finite exposure time
and the resulting dynamic-dependent errors when measuring

an elastic modulus using microrheology techniques. The first
section shows the general expression for the apparent mean-
squared displacement resulting from the propagation of these
errors on the true mean-squared displacement. The second
part explores three model fluids exhibiting a purely elastic
regime, for which the dynamic error can have a dramatic
effect. In the third section, we discuss implications of these
results on microrheology measurements.

II. DYNAMIC ERROR

Experimentally, microrheology involves measuring par-
ticle displacements using some sort of detectorse.g., CCD
for video microscopy or quadrant photodiode for laser de-
flection trackingd. A single measurement requires a given ex-
posure times during which the particle is continually mov-
ing. Thus, the position that is acquired at timet contains the
history of the successive positions occupied by the particle
during the time intervalft−s ,tg. We model this dynamic
error by calculating the measured position as the average
x̄st ,sd of all the positions the particle takes during the acqui-
sition f9g,

x̄st,sd =
1

s
E

0

s

xst − jddj. s1d

The finite sampling acts as a moving average low-pass linear
filter f10g. To estimatekDx̄2st ,sdl, we use a method similar
to that used in Ref.f11g and we write

x̄su + t,sd − x̄su,sd =
1

s
E

0

s

dj8E
u

u+t

dt8vst8 − j8d, s2d

wherevstd is the true velocity of the particle. In terms of the
velocity autocorrelation functionCvsut9− t8ud=kvst8d ·vst9dl,
we find
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kDx̄2st,sdl = kfx̄su + t,sd − x̄su,sdg2l

=
1

s2E
0

s

dj8E
0

s

dj9E
0

t

dt8E
0

t

dt9

3Cvsust8 − j8d − st9 − j9dud

=
2

s2E
0

s

dj ss − jdE
0

t

du st − ud

3fCvsu + jd + Cvsuu − judg

after multiple changes of variable and partial integrations. By
comparing this expression to the similar expression obtained
for the true mean-squared displacementf11g,

kDx2stdl = 2E
0

t

st − udCvsuddu, s3d

we finally find, under the conditiontùs,

kDx̄2st,sdl =
1

s2E
0

s

fkDx2st + jdl + kDx2st − jdl − 2kDx2sjdlg

3ss − jddj. s4d

This relation is linear, but in general is difficult to invert.
We present in the next section three relevant examples for

model viscoelastic fluids in which Brownian particles exhibit
a known mean-squared displacementkDx2stdl. These ex-
amples give specific insight into how the resulting measured
mean-squared displacementkDx̄2st ,sdl compares with the
true mean-squared displacementkDx2stdl.

III. FLUID MODELS

A. Power-law relaxation model

We first consider a toy-model where the mean-squared
displacement has the following form:

kDx2stdl
kDxp

2l
= Hst/tda if t ø t,

1 if t . t,
J s5d

wherekDxp
2l is the plateau value andt is the characteristic

time required to reach this plateau. The fluctuation-
dissipation theorem and the generalized Stokes relation gives
kDxp

2l=kBT/ spaGd, where a is the radius of the spherical
particle,G is the elastic modulus of the medium, andkBT is
the Boltzmann temperature. The mean-squared displacement
described by this model is qualitatively observed in many
systems, though the sharp break introduced att=t is not
physically realistic. This model allows us to consider on one
hand the characteristic plateau onset timet, as well as the
nature of the particle dynamics through the exponenta.

For this model, we find that a plateau is reached fort
.t̄ssd, where t̄ssd=t+s is the apparent relaxation time,
and takes the following values:

kDx̄p
2ssdl

kDxp
2l

=51 −
2ss/tda

s1 + ads2 + ad
if s ø t,

a

ss/td2S2ss/td
1 + a

−
1

2 + a
D if s . t.6 s6d

One can also calculate the apparent short-time power law
āst=s ,sd where the local apparent power-law scaling is de-
fined by

āst,sd =
dslogkDx̄2st,sdld

dslog td
. s7d

We show in Fig. 1 the evolution of these quantities as a
function of the acquisition times. Effects of the finite sam-
pling become important fors*t. The apparent plateau
value vanishes whens@t as shown in Fig. 1sad. More dra-
matic is the effect of the sampling process on the short-time
power-law scalingfFig. 1sddg. In general, the true scaling is
not recovered in the apparent mean-squared displacement
whens& t!t f16g. An exception to this is the ballistic case
a=2 for which measured displacements are independent of
s, as shown by plugging a constant velocityvstd=v in Eq.
s2d.

B. Voigt fluid model

The shear modulus spectrum of the Voigt fluid viscoelas-
tic model is given by

FIG. 1. sColor onlined Results for the power-law relaxation
model.sad andsbd are the exact mean-squared displacementsdotted
linesd from Eq. s5d and its apparent valuesssolid linesd obtained
from Eq. s4d with s /t=0.1, 1, and 10.scd shows the apparent pla-
teau values, as given by Eq.s6d. The filled circles correspond to the
three values ofs /t used insad andsbd. sdd is the short-time power-
law scalingfEq. s7d, solid linesgvs s /t. The dashed-dotted lines are
the values for the exact scalingast=sd.
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G*svd = Gs1 + ivtvd, s8d

whereG is the elastic modulus andtv is the relaxation time.
The equation governing the particle dynamics for this model
is then given by

tvtbẍstd + tvẋstd + xstd = fstd/s6paGd, s9d

wheretb=m/ s6paGtvd is the Brownian timesm being the
mass of the particled, andfstd is the Brownian forcef12g. By
taking the Fourier transform on both sides of Eq.s9d, we can
calculate the power spectral density of the position by

Sx
*svd = kux* u2svdl =

tvkBT/spaGd
s1 + t+

2v2ds1 + t−
2v2d

, s10d

where we have introduced the relaxation times

t± =
tv

2
s1 ± Î1 − 4tb/tvd, s11d

that can be complex numbers in the underdamped case 4tb
.tv. To write Eq. s10d, we have also used the fluctuation-
dissipation theoremSf

*svd=kuf* u2svdl=36paGtvkBT. The in-
verse Fourier transform ofSx

*svd gives the position autocor-
relation function Cxstd and we use the relationkDx2stdl
=2Cxs0d−2Cxstd to find

kDx2stdl
kDxp

2l
=

t+s1 − e−utu/t+d − t−s1 − e−utu/t−d
t+ − t−

. s12d

For the overdamped regime 4tb/tv!1, shown in Fig. 2sad, a
plateau region is obtained fort@tv. However, for the under-
damped limit 4tb/tv@1, plotted in Fig. 2sbd, the plateau is
reached fort@Îtbtv and the mean-squared displacement ex-
hibits oscillations around the plateau value with a period of
,2pÎtbtv.

Using Eq. s4d, we can calculate the apparent mean-
squared displacementkDx̄2st ,sdl and obtain the plateau
value by lettingt@maxstv ,Îtbtvd,

kDx̄p
2ssdl

kDxp
2l

=
t+ + t−

s/2
−

t+
3s1 − e−s/t+d − t−

3s1 − e−s/t−d
s2st+ − t−d/2

.

s13d

We first consider the overdamped limit. In that case, the
characteristic timescale istv and Eq.s13d simplifies to

kDx̄p
2ssdl

kDxp
2l

=
tv

s/2
−

1 − e−s/tv

ss/tvd2/2
+ Ostb/tvd s14d

as obtained by keepings /tv finite andtb/tv→0.
It is interesting to consider the underdamped regime of

the Voigt model since we will show it is similar to the short-
time behavior of the Maxwell model in the next section. The
apparent plateau value is obtained by keepings /Îtbtv finite
andtv /tb→0,

kDx̄p
2ssdl

kDxp
2l

= sinc2S s

2Îtbtv
D + Osstv/tbd1/2d, s15d

where sincsxd=sinsxd /x is the sine cardinal function. Note
that the same results would have been obtained if the follow-

ing approximated mean-squared displacement were plugged
into Eq. s4d:

kDx2stdl
kDxp

2l
= H1 − e−t/tv + Ostb/tvd,

1 − cosst/Îtbtvd + Osstv/tbd1/2d,
J s16d

by, respectively, keepingt /tv or t /Îtbtv finite. In particular,
the apparent mean-squared displacement in the inertialess
limit tb/tv=0 is found to bef8g

kDx̄2st,sdl
kDxp

2l
= ess1 − bse−t/tvd, s17d

with

es =
kDx̄p

2ssdl
kDxp

2l
=

tv

s/2
−

1 − e−s/tv

ss/tvd2/2
, s18d

bs = 1 −
sinhss/tvd − s/tv

1 − e−s/tv − s/tv
. s19d

Similar to the power-law relaxation model, the plateau
value shown in Fig. 2scd is greatly modified by the finite
sampling fors greater than the characteristic plateau onset
time. In the underdamped case, the plateau is reached

FIG. 2. sColor onlinedResults for the Voigt fluid model.sad and
sbd are the exact mean-squared displacementsdotted linesdfrom Eq.
s12d and its apparent valuessolid linesdobtained from Eq.s4d with
s /tv=0.1,1,10 insad, ands /Îtbtv=2,2p ,10 in sbd. scd shows the
apparent plateau values, as given by Eq.s13d. The filled circles on
each line denote the values ofs used insad and sbd.
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through oscillations and its apparent value is nonmonotoni-
cally decreasing with increasing acquisition timefcf. the os-
cillating line in Fig. 2scdg.

C. Maxwell fluid model

In the single relaxation time Maxwell fluid viscoelastic
model, the shear modulus spectrum is given by

G*svd = G
ivtm

1 + ivtm
, s20d

whereG is the elastic modulus andtm is the relaxation time.
The equation governing the particle dynamics for this model
is then

tmtbv̈std + tbv̇std + vstd = fstd/s6paGtmd, s21d

wherevstd= ẋstd is the velocity of the particlef12g. By taking
the Fourier transform on both sides of Eq.s21d, we can cal-
culate the power spectral density of the velocity by

Sv
*svd = kuv* u2svdl =

kBT/spaGtmd
s1 + t+

2v2ds1 + t−
2v2d

, s22d

where we have introduced the complex relaxation time

t± =
tb

2
s1 ± iÎ4tm/tb − 1d s23d

and we have used the fluctuation-dissipation theoremSf
*svd

=36paGtmkBT. The inverse Fourier transform ofSv
*svd re-

turns the velocity autocorrelation functionCvstd and the use
of Eq. s3d gives finally f17g

kDx2stdl
kDxp

2l
=

utu
t+

+
utu
t−

−
t+

3s1 − e−utu/t+d − t−
3s1 − e−utu/t−d

t+t−st+ − t−d
.

s24d

We investigate only the physically realistic regime where
tm/tb@1.

For the Maxwell model, a plateau region is obtained for
Îtbtm, t,tm and its apparent value is found to be

kDx̄p
2ssdl

kDxp
2l

= lim
t/Îtbtm→`

F kDx̄2st,sdl
kDxp

2l
−

t

t+
−

t

t−
G

=
t+

5s1 − e−s/t+d − t−
5s1 − e−s/t−d

s2t+t−st+ − t−d/2
−

t+ + t−

s/2

−
t+

3 + t−
3

st+t−/2
−

s

3t+
−

s

3t−
. s25d

For 2pÎtbtm,sø t, the sampling rate is not high enough
to detect the oscillations in the mean-squared displacement,
and we introduce the following approximationf18g:

kDx̄2st,sdl
kDxp

2l
. esS t

tmes

+ 1D , s26d

with es=kDx̄p
2ssdl / kDxp

2l and obtained by discarding oscilla-
tory terms inkDx̄2st ,sdl. Equations26d also shows that the
apparent Maxwell relaxation time is

t̄mssd = tmes. s27d

Next, we calculate the limiting behavior of Eq.s25d as
tb/tm→0. By keepings /Îtbtm finite, we obtain

kDx̄p
2ssdl

kDxp
2l

= sinc2S s

2Îtbtm
D + Osstb/tmd1/2d, s28d

whereas by keepings /tm finite, we find

kDx̄p
2ssdl

kDxp
2l

= −
s

3tm
+ Ostb/tmd. s29d

It is interesting to note the close resemblance of Eq.s15d to
Eq. s28d. This point will be discussed in the next section.

The inertialess regime is a peculiar limit where

kDx̄2st,sdl =
kDxp

2l
tm

st − s/3d s30d

is similar to the purely viscous model, for which
kDx̄2st ,sdl=6Dst−s /3d, whereD is the self-diffusion coef-
ficient of the particlef8g. Note that this result is obtained for
any finite value ofs /tm, so that the Maxwell relaxation time
is not measurable even ifs!tm.

Figure 3 shows the results for the single relaxation time
Maxwell model, withtm/tb=1012 as found in experimental
studiesssee the Discussion sectiond. Note in Fig. 3sadthat the
mean-squared displacement oscillations, with period
,2pÎtbtm, cannot be distinguished fort.s.2pÎtbtm.

FIG. 3. sColor onlinedResults for the Maxwell fluid model, with
tm/tb=1012 smotivation for this value is given in the Discussion
sectiond.sad gives the true mean-squared displacementsdotted lined
and its apparent valuessolid linesd for s /Îtbtm=2, 2p , 10, and
103. The dotted and thick lines are obtained with Eq.s26d whereas
the thin curves result from exact calculations using Eqs.s4d and
s24d. sbd shows the apparent plateau values as given by Eq.s25d.
The filled circles denote the values ofs used insad.
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IV. DISCUSSION

Using a relatively simple model for the dynamic error, we
can quantify the effect of the acquisition time on the mean-
squared displacement of thermally fluctuating particles in a
complex medium. Moreover, most of the trends of the Voigt
and Maxwell models are captured with the simple power-law
relaxation model.

The complex shear modulus spectrumG*svd can be
evaluated using the generalized Stokes-Einstein relation ob-
tained in the inertialess limitf3,4g,

G̃ssd =
kBT

spakDx̃2ssdl
with G*svd = G̃sivd, s31d

where G̃ssd and kDx̃2ssdl are the Laplace transform of the
shear modulus and of the mean-squared displacement,s be-
ing the Laplace frequency.

For the Voigt model, we can use the inertialess limit Eq.
s17d for the mean-squared displacement to find

G*sv,sd =
G

es

1 + ivtv

1 + ivtvs1 − bsd
. s32d

Using the approximation given by Eq.s26d for the Maxwell
model, we find

G*sv,sd =
G

es

ivtmes

1 + ivtmes

. s33d

These apparent shear modulus spectra are compared to the
exact expressions Eqs.s8d and s20d in Fig. 4.

To evaluate the errores, one must compare the acquisition
time s to the onset time of the plateau. In the Maxwell model
and the underdamped Voigt model, the ballistic regime ob-
served before the plateau is extended to an onset timeÎtbtm

andÎtbtv, respectively. These timescales can be understood
with a simple picture. In the elastic regime, the particle
moves in a harmonic wellUsxd=kx2, with k=6paG and
where G is the elastic modulus of either the Voigt or the
Maxwell fluid. Since the particle equilibrium energy iskBT,
it moves in a rangex= ±ÎkBT/k. The time required to sample
this range at the equilibrium velocityÎkBT/m is thenÎm/k,
equal to, respectively,Îtbtv or Îtbtm in the Voigt or the
Maxwell model.

This simple picture of a particle in a harmonic potential
well helps to understand the effect of the sampling and the
common trends observed for the apparent plateau values ass
increases. In a time interval of lengtht, the particle has
sampled all possible positions in the potential well. Thus,
when averaged over a time intervals.t, its apparent posi-
tion remains constant equal to the potential center, and the
apparent mean-squared displacement tends to 0.

Few microrheology experiments have been performed on
single relaxation time fluid models. In a study by van Zanten
and co-workersf13g, measurements were performed on
CTAB/KBr wormlike micelle aqueous solution using diffus-
ing wave spectroscopy with 2a.1 mm diameter polystyrene
beads for probe particles. This technique provides a high
temporal resolution ofs.10−6 s limited by the sampling

frequency of the multiple-tau digital correlator as used for
lag times larger than,1 ms f14g. Under the conditions they
used f19g, both rheological and microrheological measure-
ments show a single relaxation time Maxwellian behavior of
the solution. From their data we finds /Îtbtm.10 and
tm/tb.1012. For these values, the use of Eq.s25d shows that
the apparent plateau is less than 5% of the true values, which
corresponds to a factor of 20 for the error in the estimated
elastic modulusG ssee Fig. 4d. However, the plateau moduli
estimated by van Zanten and co-workers are in good agree-
ment with rheological measurementf13g. Another plateau
onset timete.s is involved in the dynamics. They suggest
that for t,te the particle’s dynamics is driven by the Rouse
behavior of the wormlike micelles, that is,kDx2stdl~ t1/2

f15g. We can modify our power-law relaxation model to take
the Maxwell behavior into account by setting

kDx2stdl
kDxp

2l
= Hst/ted1/2 if t ø te,

st − ted/tm + 1 if t . te.
J s34d

If we takete/tm=10−3 ands /tm=10−5, we find that the dy-
namic error diminishes the plateau value by only 5%.

It is instructive to consider the dynamic error arising in
the same experimental system when studied by the com-
monly employed technique of video microscopyf6–8g. Stan-
dard video microscopy uses an industrial grade CCD camera
for signal detection with usuallys.10−3 s. If the experi-

FIG. 4. sColor onlinedApparent shear modulus spectrum for the
Voigt modelsad and the Maxwell modelsbd obtained from Eqs.s32d
ands33d, respectively. The open symbols show the apparent storage

modulusG8 sreal part ofG*d and the filled symbols give the loss
modulusG9 simaginary part ofG*d. Circles are the exact values
ffrom Eq. s8d in sad and Eq.s20d in sbdg. The triangles and squares
are the apparent values withs being, respectively, equal to the

plateau onset timefs=tv in sad ands=Îtbtm in sbdg and 10 times

the plateau onset timefs=10tv in sad ands=10Îtbtm in sbdg. We
took tm/tb=1012 for sbd.
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mental Maxwell model fluid described here was studied with
video microscopysthens /tm.10−2 ands /te.10d, we pre-
dict that the dynamic error will lead to a great discrepancy
between the microrheology measurements and the bulk rhe-
ology sFig. 4d. This dramatic comparison reinforces the need
to understand the dynamic error when performing microrhe-
ology using different setups.

V. CONCLUSION

We investigated the effect of a finite exposure time on
microrheology measurements of fluids in which an embed-
ded particle’s mean-squared displacement displays a plateau

above an onset timet. Using common viscoelastic models,
we find that the sampling rates−1 has a great effect on the
measured shear modulus. In particular, the latter exhibits ap-
parent magnitudes that greatly differ from the expected value
when s is larger thant and our calculations allow us to
quantify these effects. In general, at frequenciesv&s−1, ex-
tracted scalings and analysis should be performed with great
care.
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