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Abstract The Responsive Particle Dynamics model is a
very efficient method to account for the transient forces
present in complex fluids, such as solutions of entangled
polymers. This coarse-grained model considers a solu-
tion of particles that are made of a core and a corona.
The cores typically interact through conservative inter-
actions, while the coronae transiently penetrate each
other to form short-lived temporary interactions, typ-
ically of entropic origin. In this study, we reformu-
late the resulting rheological model within the general
framework of nonequilibrium thermodynamics called
General Equation for the Nonequilibrium Reversible-
Irreversible Coupling. This allows us to determine the
consistency of the model, from a mechanistic and ther-
modynamic point of view, and to isolate the reversible
and irreversible contributions to the dynamics of the
model system.
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Introduction

The theoretical description of flowing complex fluids
ultimately involves a certain level of coarse graining

T. Savin (B) · H. C. Öttinger
Department of Materials, ETH Zürich, 8093 Zürich,
Switzerland
e-mail: savin@mat.ethz.ch

W. J. Briels
Computational Biophysics, University of Twente,
P.O. Box 217, 7500 AE Enschede, The Netherlands

(Larson 1998; Cates and Evans 2000; Müller-Plathe
2002; Kröger 2005; Ilg et al. 2009). Indeed, not all
degrees of freedom can be accounted for in full details.
In fact, a full description would be inconsequential
because most experiments and observations essentially
probe only a subset of all these degrees of freedom,
called “slow variables” (Öttinger 2005; Briels 2009).
Polymer liquids are the archetypical example of com-
plex fluids, and the internal degrees of freedom, such
as the positions of all molecules, as well as their orien-
tations and their configurations, are not accessible to
typical bulk rheology measurements (Bird et al. 1987).
The outcomes of the measurements may strongly de-
pend, however, on some of the microscopic details, like
for example the chains’ entanglement, whose manifest
effects include the occurrence of shear thinning and
shear banding of the fluid under deformation (Dhont
and Briels 2008; Boukany and Wang 2009; Briels et al.
2011; Adams et al. 2011; Cao and Likhtman 2012). An
intricate challenge of developing a theory for flowing
polymer solutions is to isolate a small number of intel-
ligible coarse-grained, slow variables, whose transport
equations can be expressed in term of a small number
of material properties.

A few years ago, in part motivated by developing
efficient algorithms for soft matter simulations, Briels
and coworkers introduced a particulate nonequilibrium
model of flowing complex fluids that includes transient
forces between the particles (van den Noort et al. 2007;
Kindt and Briels 2007). Their universal model, the Re-
sponsive Particle Dynamics model (RaPiD), considers
a collection of particles, whose interactions depend on
a small number of variables describing the history of
the eliminated degrees of freedom. To be more pre-
cise, the particles interact through conservative forces
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Fig. 1 We consider here a suspension of interacting RaPiD
particles (a), each being composed of a core and a corona. The
coronae interact via transient forces, which are relaxing at time
scales comparable to the dynamics of the particles’ center of
mass, and the pair penetration order parameter nij, between

particles i and j quantifies the interaction between the coronae
(b). The RaPiD model can represent a variety of systems (see
text for examples and corresponding references), and we show
in b the case of star polymers: nij could represent the number of
entanglements in that case

representing cores of various degrees of softness sur-
rounded by possibly very complex coronae (see Fig. 1)
and, in addition to these, through transient forces,
depending on the actual thermodynamic state of the
coronae. Central to their model is the definition of a
dynamic pair penetration order parameter nij between
particles i and j (Fig. 1b) that quantifies the devia-
tion from equilibrium of the overlapping coronae of
both particles. The penetration parameter could, for
example, indicate the degree of mixing between the
arms of two star polymers (see Fig. 1b) or the number
of bridges established between telechelic micelles. The
dynamics of the coronae’s penetration is assumed to
be comparable to the dynamics of the particles’ centers
of mass, put in motion by moving boundaries, pressure
gradients, and/or by Brownian fluctuations. The RaPiD
model has been successful in reporting rheological be-
havior of star polymers (Briels et al. 2011), telechelic
(Sprakel et al. 2009), sticky particles and composites
(Padding et al. 2011). Notably, RaPiD is one of the rare
techniques for efficiently incorporating memory into
Brownian dynamics simulations, although the mode-
coupling theory was used to also obtain usable time-
dependent correlation functions for the description of
glasses (Götze and Sjörgen 1992; Götze 1999; Fuchs and
Cates 2009).

An important issue that has not yet been addressed
with the RaPiD model is its “thermodynamic admis-
sibility”. It is essential that the final transport equa-
tions satisfy the principles of thermodynamics, and one
needs to identify the thermodynamic potentials that
generate them. The General Equation for the Nonequi-
librium Reversible-Irreversible Coupling (GENERIC)
framework provides a convenient and rigorous tool to
assess the mechanical and thermodynamic validity of
transport equations while highlighting the separation

of reversible and irreversible dynamics contributions
(Öttinger and Grmela 1997; Grmela and Öttinger 1997;
Öttinger 2005). It has been successful in both proving
the consistency, as well as extending a wide variety
of models, including rheological models of colloids
(Wagner 2001; Ellero et al. 2003) and polymer so-
lutions (Öttinger 2001), elasticity (Mielke 2011) and
viscoplasticity (Hütter and Svendsen 2012), and even
relativistic hydrodynamics (Öttinger 1998a, b, 1999;
Ilg and Öttinger 1999) or dissipative quantum systems
(Öttinger 2011).

In this article, we propose to use GENERIC to
build a complete thermodynamic model of transient
interaction in complex fluids, which ultimately verifies
the validity of the RaPiD model. In a first part, we
briefly summarize the GENERIC paradigm, that we
next apply to the RaPiD model, before discussing sev-
eral implications of our new formulation.

The GENERIC framework

Transport equations for nonequilibrium systems have
a well-defined structure in which reversible and irre-
versible contributions can be specified separately. The
reversible contribution is “under mechanistic control”,
and hence of the Hamiltonian form, requiring an un-
derlying geometric structure based on Poisson brackets.
The remaining irreversible contribution is generated by
the nonequilibrium entropy by means of a dissipative
bracket.

In this article, we will base our discussion on the
GENERIC formulation of time evolution for nonequi-
librium systems. If A is an arbitrary observable, that
is, a sufficiently regular real-valued function or func-
tional of a set of variables x required for a complete
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description of a given nonequilibrium system, the time
evolution of A is given by

dA
dt

= {A, E} + [A, S] . (1)

The observables E and S generating time evolution
are the total energy and entropy, and {·, ·} and [·, ·]
are Poisson and dissipative brackets, respectively. The
bracket of two observables A and B is another observ-
able with a linear dependence on A and B (a more
complete characterization of Poisson and dissipative
brackets is given below). The two contributions to
the time evolution of A generated by the total en-
ergy E and the entropy S in Eq. 1 are the reversible
and irreversible contributions, respectively. Equation
1 is supplemented by the complementary degeneracy
requirements

{S, A} = 0 , (2)

and

[E, A] = 0 , (3)

which hold for all observables A. The requirement
that the entropy is a degenerate functional of the
Poisson bracket expresses the reversible nature of the
first contribution to the dynamics: the functional form
of the entropy is such that it cannot be affected by
the Poisson bracket contribution to the dynamics, no
matter which observable A is used as a generator of
reversible dynamics. The requirement that the energy
is a degenerate functional of the dissipative bracket
expresses the conservation of the total energy by the
dissipative contribution to the dynamics in a closed
system.

For completeness, we give the defining properties of
Poisson and dissipative brackets. The Poisson bracket
possesses the antisymmetry property

{A, B} = −{B, A} , (4)

and satisfies the product, or Leibniz, rule

{AB, C} = A{B, C} + B{A, C} , (5)

as well as the Jacobi identity

{A, {B, C}} + {B, {C, A}} + {C, {A, B}} = 0 , (6)

where A, B, and C are arbitrary observables. These
properties are well-known from the Poisson brackets
of classical mechanics, and they express the essence

of reversible dynamics. The Jacobi identity (6), which
is a highly restrictive condition for formulating proper
reversible dynamics, expresses the invariance of Pois-
son brackets in the course of time (time-structure
invariance).

The dissipative bracket satisfies the symmetry
condition1

[A, B] = [B, A] , (7)

and the non-negativeness condition

[A, A] ≥ 0 . (8)

This non-negativeness condition, together with the
degeneracy requirement (2), guarantees that the en-
tropy is a nondecreasing function of time,

dS
dt

= [S, S] ≥ 0 . (9)

The condition (8) may hence be regarded as a strong
formulation of the second law of nonequilibrium ther-
modynamics.

In practical calculations, it is often convenient to
formulate GENERIC in terms of Poisson and friction
operators instead of brackets. More precisely, one can
write, without loss of generality,

{A, B} = δA
δx

· L(x) · δB
δx

, (10)

and

[A, B] = δA
δx

· M(x) · δB
δx

, (11)

where L(x) is the Poisson operator, M(x) is the friction
operator, x is the vector of system variables, and δA

δx
designates the functional derivatives of A with respect
to x. The Leibniz rule (5) then follows automatically, L
is imposed to be antisymmetric by Eq. 4, and M must
be symmetric and positive semi-definite from Eqs. 7–8.
The time-evolution equations for the system variables
x implied by Eq. 1 can be expressed in the form

dx
dt

= L(x) · δE
δx

+ M(x) · δS
δx

, (12)

1For a more detailed discussion of the Onsager–Casimir symme-
try of the dissipative bracket, see Section 3.2.1 in Öttinger (2005);
for a very detailed level of description, the dissipative bracket
might not possess any well-defined symmetry properties, as is
elaborated in Section 7.2.4 of Öttinger (2005).
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and the degeneracy conditions, Eqs. 2 and 3, respec-
tively follow:

L(x) · δS
δx

= 0 , (13)

M(x) · δE
δx

= 0 . (14)

The summations implied by the dot product include
integrations over the system’s volume when fields are
involved in the list of independent variables.

We now implement the GENERIC formulation of
the RaPiD model by choosing proper variables x and
by building each block E(x), S(x), L(x), and M(x) of
the evolution equation (12).

Coarse-grained model

System variables x

The general coarse-grained model to describe the dy-
namics for a system of particles with transient inter-
actions has been introduced by van den Noort et al.
(2007) and Briels (2009). The model is both applicable
to solutions of complex molecules as well as to melts of
such molecules. In the former application, the solvent
is considered to be a continuum, assumed here to be
Newtonian, while in all cases, the particles are treated
explicitly. The particles interact via conservative forces
and transient forces depending on a set of pair penetra-
tion order parameters treated as dynamical variables.
The time evolution of the particles and the pair pen-
etration order parameters is assumed to be governed
by Brownian displacements. In the GENERIC formu-
lation, they are conveniently represented by their prob-
ability distribution. We may therefore introduce the
following complete set of independent slow variables:

– ρ(r) is the total mass density of the system,
– m(r) the total momentum density of the system,
– ε(r) the background internal energy density,
– ψ(R, n) the probability distribution of the state

(R, n).

Here, we have denoted r the position in the sys-
tem’s volume, R = {Ri}1≤i≤N the N particles’ positions
(i.e., N = 3N coordinates), and n = {nij}1≤i, j≤N the pair
penetration order parameters (i.e., P = N(N − 1)/2
distinct values). The latter can be interpreted as “the
number of stickers” or the “number of entanglements”
between the coronae of two particles, although we con-
sider in general that it can take any real value. The pair
penetration parameters follow a relaxation dynamics

whose time scale is comparable to the dynamics of the
particles’ positions (Briels et al. 2011).

Note that ρ and m measure the densities for the
total system composed of the RaPiD particles, usually
complex polymers, together with the solvent in which
they bath, while we separate the energetic and entropic
contributions of the particles and of the solvent: here,
ε is the internal energy density of the solvent only. The
internal energy generated by the particles’ interactions
is explicitly given in the next section. We further assume
that the RaPiD particles are neutrally buoyant in the
solvent so that any gravitational effects can be ignored.
If the modeled material does not have a solvent, such
as a melt, then ε is the background internal energy of
the remaining fast fluctuations in the system.

The vector of independent variables is written

x(r, R, n) = [
ρ(r), m(r), ε(r), ψ(R, n)

]T (15)

and depends on the position r in the system, the parti-
cles positions R, and the order parameters n. The time
dependency will not be explicitly indicated throughout
the article.

Total energy E(x) and entropy S(x)

The expressions for the total energy E(x) and the total
entropy S(x) are as follows:

E(x) =
∫ [

m(r)2

2ρ(r)
+ ε(r)

]
d3r

+
∫∫

�E(R)ψ(R, n) dPn dNR , (16)

S(x) =
∫

s
(
ρ(r), ε(r)

)
d3r

− kB

∫∫
ψ(R, n) ln

ψ(R, n)

ψ0
dPn dNR

+
∫∫

�S(R, n)ψ(R, n) dPn dNR , (17)

where �E(R) is the energy resulting from the conserva-
tive interactions between the RaPiD particles, depend-
ing on the positions R only, s(ρ, ε) is the entropy den-
sity of the solvent, and �S(R, n) is the configurational
entropy associated with the coronae in the system’s
state (R, n).

The first term of E(x) in Eq. 16, with only a spatial
integration over r, represents the total kinetic energy
of the system and the background internal energy. The
second term, involving a configurational integration
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over (R, n), gives the additional conservative contribu-
tion of the potential interaction between the RaPiD
particles. In most cases, we may write

�E(R) =
∑ ∑

i< j

φE(Rij) , (18)

where Rij = Ri − R j is the position of the jth particle,
relative to the position of particle i, and the sum runs
over all pairs of indiscernible particles.

We now explain the various entropic contributions
present in the expression (17) for S(x). The first term
is the background entropy of the system, written as
the spatial integral of the background entropy density
s(ρ, ε), which is a well-defined thermodynamic quantity
by virtue of the local equilibrium assumption, depend-
ing only on the mass density ρ and the internal energy
density ε. The existence of the local “background” en-
tropy and energy, s and ε respectively, that are indepen-
dent of the configurational coordinates (R, n) notably
ensures that a background temperature and chemical
potential can be defined (see later). The second term
of S(x) is a configurational entropy contribution that
represents the preference of the system towards a uni-
form distribution, and ψ0 is a characteristic scale of ψ

whose choice has no consequence. The third term in-
troduces the total configurational entropy �S(R, n) of
all particles’ coronae for the given configuration (R, n).
We separate the equilibrium configurational entropy
of the overlapping coronae from the nonequilibrium
entropic contributions caused by insufficient relaxation
on mutual penetration of the coronae, and we may
write

�S(R, n) = �S(R) + 	S(R, n) . (19)

We assume the following form for �S(R),

�S(R) =
∑

i

σ
(
ρi(R)

)
, (20)

as the sum of configurational entropies of the N coro-
nae, where σ is the entropy of the corona of particle
i that depends only on the local density ρi of the sur-
rounding constituents for the RaPiD particle i. For a
particular set of positions for the RaPiD particles, the
local microscopic density is well defined at every posi-
tion in the system. The entropy of the coronae may then
be uniquely calculated by distributing the material that
makes up the coronae, for example by a Flory–Huggins
type of calculation in the case of polymeric coronae.
The entropy per RaPiD particle will then depend on
the local microscopic density. The latter local density ρi

depends only on the relative locations Rij of the N − 1
particles surrounding the particle i, and may, apart from
some constant factor, be written as

ρi(R) =
∑

j

w(Rij) , (21)

where w is a weight function whose integral over the
entire space equals unity, and where i, hence the ref-
erence density w(0) contributed by an isolated particle,
must be included in the sum. Details about this choice
for �S can be found in the articles by Pagonabarraga
and Frenkel (2001), Kindt and Briels (2007), and Briels
(2009).

The penetration term 	S(R, n) in the definition (Eq.
19) involves the sum over all pairs of particles of the en-
tropy due to insufficient relaxation of interpenetrated
coronae:

	S(R, n) = −
∑∑

i< j

φS(Rij, nij) . (22)

Here, −φS(Rij, nij) is the stored, nonequilibrium,
instantaneous entropy in the penetrating coronae of
the pair i, j of two RaPiD particles, providing a neg-
ative contribution because it is removed from the to-
tal entropy of the system (hence the minus sign for
φS ≥ 0, see below). An expression for the entropy loss
φS(Rij, nij) has been proposed as the leading term in an
expansion with respect to nij − n0(Rij), where n0(Rij) is
the equilibrium value of the penetration order parame-
ter (van den Noort et al. 2007; Briels 2009; Briels et al.
2011). We thus write:

φS(Rij, nij) = 1
2
αS(Rij)

[
nij − n0(Rij)

]2 + . . . , (23)

where the stiffness αS(Rij) = ∂2φS

∂n2
ij

> 0 is a design pa-

rameter that may indeed depend on the interparticle
distance. Various forms of n0(Rij), depending on what
molecule the RaPiD particle is representing (star poly-
mer, core-shell particle, . . . ), may be found (Kindt and
Briels 2007; Padding et al. 2011; Briels et al. 2011). Note
however that the general model presented here does
not depend on this particular choice for φS(Rij, nij). Its
validity, however, is linked to the specific dependency
of �S on Rij highlighted in the formulas (20) to (22).

Equipped with the formulas (16) and (17) for the
total energy E(x) and the total entropy S(x) of the
nonequilibrium system, we calculate their functional
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derivatives with respect to each component of the
vector of variables x given by the definition (15):

δE
δx

=
[
−v(r)2

2
, v(r), 1, �E(R)

]T

, (24)

δS
δx

=
[
−μ(r)

T(r)
, 0,

1
T(r)

,
δS
δψ

]T

, (25)

with the velocity defined as v(r) = m(r)
ρ(r) , the temperature

as T(r) = (
∂s(ρ,ε)

∂ε

∣
∣
ρ

)−1, and the chemical potential as

μ(r) = −T(r) ∂s(ρ,ε)

∂ρ

∣∣
ε
. The last component δS

δψ
reads:

δS
δψ

= �S(R, n) − kB ln
ψ(R, n)

ψ0
, (26)

to within an arbitrary constant, irrelevant in the
present study, coming from calculating the functional
derivative with the normalization constrain

∫
ψ(R,

n) dPn dNR = 1. There remains now to express the op-
erators L(x) and M(x) to complete the GENERIC
formulation.

Operators L and M

The procedure to implement the matrices L and M
has been detailed in the original GENERIC articles
(Öttinger and Grmela 1997; Grmela and Öttinger
1997). The Poisson operator L reads:

L(x) = −

⎡

⎢
⎢
⎢⎢
⎢
⎣

0 ∂
∂rρ 0 0

ρ ∂
∂r

(
∂
∂r m + m ∂

∂r

)T
ε ∂

∂r + ∂
∂r p 0

0 ∂
∂rε + p ∂

∂r 0 0

0 0 0 0

⎤

⎥
⎥
⎥⎥
⎥
⎦

−

⎡

⎢⎢
⎢
⎢⎢
⎣

0 0 0 0

0 0 ∂
∂r · �S ∑

k ψδ(r − Rk)
∂

∂Rk

0 �S · ∂
∂r 0 0

0
∑

k
∂

∂Rk
δ(r − Rk)ψ 0 0

⎤

⎥⎥
⎥
⎥⎥
⎦

.

(27)

In order to simplify the notation, we have performed
one spatial integration implied by the dot product when
L(x) operates on δE

δx , even when this apparently breaks
the manifest antisymmetry of the operator. As a con-
sequence, all differential operators act on everything to
the right, i.e., including δE

δx . Such simplification, valid for
a local theory, is merely conventional (Öttinger 2005,
Section 2.2.2). Also, the dependencies on r, R, and n are
not all displayed in the components of L, and we refer
the reader to the previous section for the corresponding
dependencies of the various functions ρ, m, �E, �S,
ψ ,. . . etc.

The first matrix in the above expression of L cor-
responds to the reversible dynamic involving terms in
ρ, m, and ε and has been calculated in previous works
(Öttinger and Grmela 1997; Öttinger 2005). In the
components Lεm and Lmε of this matrix, we have intro-
duced the isotropic, hydrostatic pressure p = Ts − ε +
μρ. The second matrix of Eq. 27 is associated with the
RaPiD particles. In this matrix, the additional compo-
nent Lψm = ∑

k
∂

∂Rk
δ(r − Rk)ψ convects the probabil-

ity distribution under the motion of the particles, while
the component Lεm allows for an extra pressure tensor,
�S(r). The component Lmψ and Lmε are obtained from

Lψm and Lεm, respectively, using the antisymmetry
requirement, Eq. 4, of the Poisson operator.

The expression of �S(r) is obtained, to within a
divergence-free contribution, to satisfy the degeneracy
requirement. The condition L · δS

δx = 0 is immediately
met, except for the second row of L, and the m-
component of the vector L · δS

δx reads

(
L · δS

δx

)

m
= ρ

∂

∂r
μ

T
− ε

∂

∂r
1
T

− ∂

∂r
p
T

− ∂

∂r
· �S

T

−
∫∫ [∑

k

δ(r − Rk)
∂�S

∂Rk

]
ψdPn dNR

+ kB

∫∫ [∑

k

δ(r − Rk)
∂ψ

∂Rk

]
dPn dNR .

(28)

By virtue of the local equilibrium, the first three
terms of the above expression can be written:

∂

∂r

(
ρ

μ

T
− ε

1
T

− p
T

+ s
)

= 0 . (29)
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To obtain degeneracy and the form of the ex-
tra pressure tensor, we now verify that the inte-
gral terms of Eq. 28 can be written in a diver-
gence form. The first integral involves the entropy
�S of the coronae, that we separate into two con-
tributions using Eq. 19. For the first term �S(R),
we use the relations (20) and (21) to calculate
∂�S

∂Rk
= ∑

i
dσ(ρi)

dρi

dρi(R)

dRk
, with dρi(R)

dRk
= dw(Rik)

dRk
= − dw(Rik)

dRik
for

i �= k and dρk(R)

dRk
= ∑

j
dw(Rkj)

dRk
= ∑

j�=k
dw(Rkj)

dRkj
(the term

w(0) disappears after differentiation with respect
to Rk). We thus verify ∂�S

∂Rk
= ∑

i �=k

[ dσ(ρk)

dρk

dw(Rki)

dRki
−

dσ(ρi)

dρi

dw(Rik)

dRik

]
, from which we obtain

∑
k δ(r − Rk)

∂�S

∂Rk
=

∑ ∑
i �= j

[
δ(r − Ri) − δ(r − R j)

] dσ
dρi

dw
dRij

. This well-known
transformation, first used by Irving and Kirkwood
(1950), introduces the difference of two delta functions,
that can next be expressed as (McLennan 1989)

δ(r − Ri) − δ(r − R j) =
∫ 1

0

∂

∂λ
δ(r − R j − λRij)dλ

= − ∂

∂r
· (�ijRij) , (30)

where

�ij(r) =
∫ 1

0
δ(r − R j − λRij)dλ (31)

is a generalized spatial delta-function that signals the
segment connecting the RaPiD particles i and j, and
has the dimension of an inverse volume. Finally, we can
write

∑

k

δ(r − Rk)
∂�S

∂Rk
= − ∂

∂r
·
(∑∑

i �= j

�ijRij
dσ

dρi

dw

dRij

)

(32)

in a divergence form. Following a similar reason-
ing, we use the expansion of 	S given by Eq. 22.
Since

∑
k δ(r − Rk)

∂
∂Rk

φS(Rij, nij) = [
δ(r − Ri) − δ(r −

R j)
]

∂
∂Ri

φS(Rij, nij), we can again use Eq. 30 to finally
find a divergence form of

∑

k

δ(r − Rk)
∂	S

∂Rk
= ∂

∂r
·
(∑∑

i< j

�ijRij
∂φS

∂Rij

)
. (33)

In the last integral term of Eq. 28, one can inter-
change the derivative in Rk by a derivative with respect
to r to find its divergence form

kB

∫∫ [∑

k

δ(r − Rk)
∂ψ

∂Rk

]
dPn dNR = ∂

∂r
· (

ckB1
)
,

(34)

with c(r) = ∫∫ [∑
k δ(r − Rk)

]
ψ dPn dNR the concentra-

tion of RaPiD particles in the solution, that has the
dimension of an inverse volume. We finally find the
expression of �S for which

(
L · δS

δx

)
m vanishes:

�S =
∫∫

T
[(∑∑

i �= j

�ijRij
dσ

dρi

dw

dRij

)

−
(∑∑

i< j

�ijRij
∂φS

∂Rij

)]
ψ dPn dNR

+ckBT1 . (35)

All terms in �S have an entropic origin, the integral
term coming from the coronae, while the last term is
the classical osmotic pressure for the ideal colloidal
solution.

Verification of the Jacobi identity for the above
operator L can be done using symbolic computational
software (Kröger and Hütter 2010), using an action of
the group of space deformations on the configurational
variables, or by hand.

The friction operator M gives the dissipative contri-
butions to the transport equations. As such, it requires
the introduction of transport coefficients, that are es-
sential material properties of the system. Similar to the
Poisson matrix, we may identify two contributions of
the M matrix to the irreversible dynamics. The first
contribution is coming from the solvent’s rheological
response (this part vanishes in the absence of solvent)
and from the system’s thermal behavior. We assume
that the solvent is a Newtonian isotropic fluid, with
viscosity η and dilatational viscosity κ , and that the heat
flux j in the system follows Fourier’s law of conduction,
j(r) = −λ(r) · ∂T

∂r . The tensorial nature of the thermal
conductivity λ allows for anisotropic heat transport,
and its r-dependency may be inherited from inhomo-
geneous fields in the system.

The second contribution of the M operator to the
transport equations contains the relaxation of the par-
ticles’ positional and structural configurations, and in-
volves some diffusivity tensors. The diffusivity tensor
D indicates the hydrodynamic interaction of the RaPiD
particles with the fluid background. We ignore hy-
drodynamic interaction between the particles, and we
may eventually write D = D01 with D0 the particles’
size-dependent Stokes–Einstein diffusion coefficient.
We also introduce a generalized, scalar coefficient of
diffusion B for the propagation of the penetration
parameter.
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We can finally write, separating the two contribu-
tions in the order we discussed them:

M(x) =

⎡

⎢
⎢⎢
⎢
⎣

0 0 0 0
0 −(

∂
∂rηT ∂

∂r +1 ∂
∂r ·ηT ∂

∂r

)T− ∂
∂r κ̂T ∂

∂r
∂
∂r ·ηTγ̇ + ∂

∂r
κ̂T
2 trγ̇ 0

0 −ηTγ̇ · ∂
∂r − κ̂T

2 trγ̇ ∂
∂r

ηT
2 γ̇ : γ̇ + κ̂T

4 (trγ̇ )2− ∂
∂r ·λ·T2 ∂

∂r 0

0 0 0 0

⎤

⎥
⎥⎥
⎥
⎦

+ 1
kB

⎡

⎢
⎢⎢
⎢
⎢⎢
⎢
⎣

0 0 0 0

0 0 0 0

0 0
∫∫ (∑

k

∂�E

∂Rk
·Dψ · ∂�E

∂Rk

)
dPn dNR −∑

k

∂�E

∂Rk
·Dψ · ∂

∂Rk

0 0
∑

k

∂
∂Rk

·Dψ · ∂�E

∂Rk
−∑

k

∂
∂Rk

·Dψ · ∂
∂Rk

−∑∑

i< j

∂
∂nij

Bψ ∂
∂nij

⎤

⎥
⎥⎥
⎥
⎥⎥
⎥
⎦

(36)

where κ̂ = κ − 2
3η is the translated dilatational viscos-

ity, γ̇ (r) = ∂
∂r v(r) + [

∂
∂r v(r)

]T is the symmetrized veloc-
ity gradient tensor, and trγ̇ its trace.

The formula for the hydrodynamic part, that is the
first matrix in Eq. 36, has been derived in the original
GENERIC paper (Öttinger and Grmela 1997) where
its degeneracy condition is also verified. The second
part of M is built in the following way: first, Mψψ is
introduced to account for the diffusive dissipation of
the RaPiD particles and of their pair penetration para-
meter, then Mψε is obtained by using the degeneracy
condition, while the symmetry of M gives Mεψ ; we
finally get Mεε by applying the degeneracy criterion
once again. The condition M · δE

δx = 0 for the above
matrix is thus obtained by construction. In the above

expression of M, we have neglected any hydrodynamic
interactions between the RaPiD particles. Note finally
that the spatial integration has also been performed
here in order to simplify the notation.

Time-evolution equations

Using the GENERIC Eq. (12), the time-evolution
equations for the total mass density, the total momen-
tum density, the solvent internal energy density and the
state probability distribution are, respectively:

∂ρ

∂t
= − ∂

∂r
· (vρ) , (37)

∂m
∂t

= − ∂

∂r
· (vm) − ∂

∂r
· π , (38)

∂ε

∂t
= − ∂

∂r
· (vε + j) − (p1 + τ + �S) :

(
∂

∂r
v
)

+
∫∫ ∑

k

∂�E

∂Rk
· D ·

[
∂ψ

∂Rk
+ ψ

∂

∂Rk

(
�

kBT

)]
dPn dNR , (39)

∂ψ

∂t
= −

∑

k

∂

∂Rk
· [

v(Rk)ψ
]+

∑

k

∂

∂Rk
· D ·

[
∂ψ

∂Rk
+ψ

∂

∂Rk

(
�

kBT

)]
+

∑∑

i< j

∂

∂nij
B

[
∂ψ

∂nij
+ ψ

∂

∂nij

(
�

kBT

)]
. (40)

In the momentum balance (38), we have defined the
total pressure tensor

π = p1 + τ + � , (41)

where the total osmotic pressure tensor, � = �E + �S

includes the energetic contribution

�E = −
∫∫ (∑∑

i< j

�ijRij
∂φE

∂Rij

)
ψ dPn dNR . (42)

We expressed the latter using the following equality

∑

k

δ(r − Rk)
∂�E

∂Rk
= − ∂

∂r
·
(∑∑

i< j

�ijRij
∂φE

∂Rij

)
, (43)

derived by following the same reasoning outlined in the
previous section to introduce the difference of delta-
functions, Eq. 30. We also included in Eq. 41 the viscous
stress tensor τ , that takes Newton’s form, τ = −ηγ̇ −
κ̂ ∂

∂r · v1.
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In the energy and probability transport Eqs. (39)
and (40), we introduced the free energy �(r, R, n) =
�E(R) − T(r)�S(R, n).

From the Smoluchowski Eq. (40), we can infer the
following stochastic evolution equations for the RaPiD
particles’ positions:

dRk

dt
= v(Rk) − D · ∂

∂Rk

(
�

kBT

)
+ √

2D · �k , (44)

and for the penetration parameters:

dnij

dt
= −B

∂

∂nij

(
�

kBT

)
+ √

2Bθij , (45)

where �k and θij are respectively a vector and a scalar
realization of delta correlated, independent stationary
Gaussian random processes with zero-mean that verify

〈�k,ν(t)�k′,ν ′(t′)〉 = δkk′δνν ′δ(t − t′) , (46)

〈θij(t)θi′ j′(t′)〉 = δii′δ jj′δ(t − t′) , (47)

at all times t and t′, where δij is the Kronecker delta and
�k,ν indicates the ν-component of the vector �k.

With the choice of φS(Rij, nij) given by Eq. 23, the
time-evolution equation of the penetration parameter
reads

dnij

dt
= −nij − n0

τ
+ √

2Bθij , (48)

where τ = kB
αS B .

Discussion and Conclusions

In this paper, we have derived the GENERIC formu-
lation of the coarse-grained RaPiD model, and thus
proved its thermodynamic admissibility and consis-
tency. This verification essentially validates all previous
results obtained with the RaPiD particles technique.
Furthermore, the GENERIC framework allowed us to
separate energetic contributions from entropic contri-
butions to the dynamics of all ingredients in the model.
In particular we have found an expression for the total
stress, in which the distribution of entropic and ener-
getic contributions is as follows: the rearrangements
of the coronae’s internal configurations together with
their pair penetration forces are of entropic origin and
contribute to all occurrences of the stress; the energetic
interactions between the RaPiD particles contribute to
the reversible part of the stress. The expression for the
total osmotic pressure tensor agrees with the one used
in all RaPiD simulations so far. Since we based our
approach on local properties, the total osmotic pressure
tensor obtained is a local property as well. It agrees

with the one obtained a long time ago by Schofield and
Henderson (1982), and used for example by Schindler
(2010). A simple derivation for stresses in Couette flow
was further given by Thakre et al. (2008).

We have derived the set of coupled transport
equations for the RaPiD model using the systematic
GENERIC formulation of nonequilibrium thermody-
namics. Besides the equations of motion for the total
density, total momentum, and solvent energy, we have
obtained the Smoluchowski equation for the time evo-
lution of the particles’ positions and penetration num-
bers. The corresponding stochastic differential equa-
tions are indeed identical to the ones used in RaPiD
simulations, and we therefore confirm the validity of
these equations. In particular, the forces occurring in
these equations include both energetic and entropic
contributions, materialized by the occurrence of the
free energy �(r, R, n) = �E(R) − T(r)�S(R, n).

However, the linear Eq. (48) results from an approx-
imation of φS given by Eq. 23 that is valid only for
small deviations nij − n0. The entropic nature of the
interaction generated by pair penetration, highlighted
by our GENERIC formulation, indicates that a more
appropriate expression of φS, also valid for large devia-
tions, could take the typical form

φS(Rij, nij) = αS(Rij)n2
0(Rij)

×
[

nij

n0(Rij)
ln

nij

n0(Rij)
+ 1 − nij

n0(Rij)

]
. (49)

This relation would then result in the following non-
linear equation for the time evolution of the penetra-
tion parameter:

dnij

dt
= −n0

τ
ln

nij

n0
+ √

2Bθij . (50)

The functional form of the entropy given by Eq. 49
allows only for positive values of nij. It then appears to
be a natural choice if nij can indeed be interpreted as a
count of contact and/or entanglement points for over-
lapping polymers, for example. In that case, Eq. 23 is in
fact particularly questionable. We thus strongly advise
the use of the above equation to describe the evolution
of the penetration parameters in future simulations.

Further refinements of the model could include the
account of hydrodynamic interactions between RaPiD
particles. The latter affects neither the expressions for
the energy and the entropy nor the choice of variables
(Öttinger and Grmela 1997; Wagner 2001) but imposes
a modification of the friction operator M.

The RaPiD model has been recently used to model
pressure sensitive adhesives (Padding et al. 2011). In
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this system, interfacial phenomena play an important
role, and the formalism presented here could be ex-
tended to include such effects by means of the MINT
brackets (Moving Interface Normal Transfer) recently
implemented by Öttinger et al. (2009).
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